INNOVATION AND TRADE POLICY IN A GLOBALIZED WORLD

Ufuk Akcigit UChicago Sina Ates FRB Board Giammario Impullitti Nottingham

CompNet Conference - Brussels.

June 30th, 2017

Motivation - United States in the Late 1970s

Motivation - United States in the Late 1970s

"Foreign competition in the technology intensive industries poses a more serious threat to our country's position in the international marketplace than ever before in our history." **John P. McTague** (1985)^{*a*}

^{*a*}Associate Director of the Office of Science and Technology Policy of the Reagan Administration.

Motivation - United States in the Late 1970s

"... these industries are dominated by a few nations and firms so that competitive advantage brings significant economic profits and political influence. Thus, if the United States becomes a net importer and a technically inferior producer, it would also become a less independent, less influential and less secure nation."

U.S. Council of National Security (1986) 2

...And Again: State-level R&D Tax Credit

State-level R&D tax credit policies were also enacted.

R&D Policies in Other Countries

- What are the welfare effects of industrial policies in an open economy with foreign technological competition?
- Managing international competition:
 - Protectionism as a response to foreign technological catching up
 - ► **R&D subsidies** as an alternative response to foreign catching up
- ► How do the answers depend on the policymaker's horizon?

► Model:

- Open economy DGE model with endogenous technological progress
- Two large economies subject to trade frictions
- Step-by-step innovation with strategic interaction
- Endogenous entry-exit
- Transitional dynamics: important for policy horizon
- Quantitative analysis

- 1. Static effects:
 - Protectionism could benefit firms (and the overall welfare) by keeping the profits in the country.
- 2. Dynamic effects:
 - Catching up: more innovation through escape competition and through technology transfer
 - Protectionism: less innovation less technology sourcing
- 3. Protectionism yields welfare gains in the short run (10 yrs.) but large long-run losses
- 4. R&D subsidies is the dominant policy for long-sighted policy makers
- 5. Policy complementarity: lower trade barriers imply lower optimal subsidy

MODEL

Part 1. Static Environment

Preferences

• There is a representative household in each country:

$$U_{c}(t) = \int_{t}^{\infty} \exp(-\rho \left(s-t\right)) \frac{C_{c}^{1-\varepsilon}(s)-1}{1-\varepsilon} \, ds.$$
(3)

- ► Household owns: fixed factor (L_c = 1) and assets of domestic firms (A_c)
- Budget constraint

$$r_c(t)A_c(t) + L_c\omega_c(t) = C_c(t) + \dot{A}_c(t) + T_c(t),$$
 (4)

Asset markets

$$A_c(t) = \int_0^1 (V_{cj}(t) + \tilde{V}_{cj}(t)) dj.$$

Preferences

• There is a representative household in each country:

$$U_{c}(t) = \int_{t}^{\infty} \exp(-\rho \left(s-t\right)) \frac{C_{c}^{1-\varepsilon}(s)-1}{1-\varepsilon} \, ds.$$
(1)

- ► Household owns: fixed factor (L_c = 1) and assets of domestic firms (A_c)
- Budget constraint

$$r_c \quad A_c \quad + L_c \omega_c \quad = C_c \quad + \dot{A}_c \quad + T_c \quad , \tag{2}$$

Asset markets

$$A_c = \int_0^1 (V_{cj} + \tilde{V}_{cj}) dj.$$

► Final good in country *c* produced with technology

$$Y_c = \frac{L_c^{\beta}}{1-\beta} \int_0^1 q_{c'j}^{\beta} k_{c'j}^{1-\beta} dj, \text{ where } c' \in A, B$$
(5)

- ► *L_c*: Labor, fixed factor, immobile, normalized to 1.
- $j \in [0, 1]$: intermediate variety.
- ► *q*_{*cj*}: quality of variety *j* in country *c*
- ► *k*_{*cj*}: amount of variety *j* used.
- ► Highest quality good (adjusted for trade cost) is purchased.

► In each *j*, one firm per country competing for leadership à la Bertrand.

Tech. Leadership in
$$j = \begin{cases} A \text{ is leader, } & \text{if } q_{Aj} > q_{Bj} \\ B \text{ is leader, } & \text{if } q_{Aj} < q_{Bj} \\ \text{Neck&Neck, } & \text{if } q_{Aj} = q_{Bj} \end{cases}$$

- Qualities evolve through innovation and spillovers (to be explained later).
- Intermediate goods are produced at the marginal cost of η in terms of final good.
- Selling abroad has export $\cot \kappa$.

Final Good producer's maximization gives

$$p_j = q_j^\beta k_j^{-\beta}.$$

 Intermediate good producer's maximization problem when selling to domestic market

$$\Pi\left(q_{j}\right) = \max_{k_{j} \geq 0} \left\{q_{j}^{\beta}k_{j}^{1-\beta} - \eta k_{j}\right\}.$$

Final Good producer's maximization gives

$$p_j = q_j^\beta k_j^{-\beta}.$$

 Intermediate good producer's maximization problem when exporting

$$\widehat{\Pi}\left(q_{j}\right) = \max_{k_{j} \geq 0} \left\{q_{j}^{\beta}k_{j}^{1-\beta} - (1+\kappa)\eta k_{j}\right\}.$$

Intermediate Good Decisions II

• Equilibrium domestic profit is:

$$\Pi\left(q_{j}\right)=\pi q_{j},$$

where
$$\pi \equiv \left(\frac{1-\beta}{\eta}\right)^{\frac{1-\beta}{\beta}} \beta$$
.

• Equilibrium profit from selling abroad is:

$$\widehat{\Pi}\left(q_{j}\right)=\hat{\pi}q_{j},$$

where
$$\hat{\pi} \equiv \left(\frac{1-\beta}{(1+\kappa)\eta}\right)^{\frac{1-\beta}{\beta}} \beta$$
.

► Country A exports in sector *j* iff

$$\frac{q_{Aj}}{q_{Bj}} > 1 + \kappa$$

► Country A imports in sector *j* iff

$$\frac{q_{Bj}}{q_{Aj}} > 1 + \kappa$$

Proposition 1. *Consider the static environment described above. The static change in income in the open economy relative to autarky is determined by the following forces:*

- 1. *an increase in profits from generating additional profits from exports due to higher market size;*
- 2. a decline in profits from destruction of profits of laggard firms;
- 3. *an increase in wages from higher labor productivity through transfer of technology.*

The combined impact of these forces is *ambiguous*.

Akcigit, Ates, Impullitti (2017)

Impact of Openness on Profits and Wages

Figure 9: Static effects of openness

MODEL

Part 2. Dynamic Environment

- Qualities evolve through **innovation** and **spillovers**.
- Successful innovation generates quality jumps btw. t and $t + \Delta t$:

$$q_{cj}\left(t+\Delta t\right)=\lambda^{k}q_{cj}\left(t\right)$$

where $\lambda > 1$, $c \in \{A, B\}$.

• $k \in \mathbb{N}^+$ is a random variable

Quality Dynamics

- If $n_c(t) = \int_0^t k(s) ds$ is the number of quality jumps up to time t $q_{cj}(t) = \lambda^{n_c(t)}$.
- ► Technology gap between *A* and *B* in *j*

$$\frac{q_{Aj}}{q_{Bj}} = \frac{\lambda^{n_{Aj}}}{\lambda^{n_{Bj}}} = \lambda^{n_{Aj}-n_{Bj}} \equiv \lambda^{m_{Aj}}$$

• Assumption. Max gap is $\overline{m} \implies$

 $m_c \in \{-\bar{m}, -\bar{m}+1, ..., 0, ..., \bar{m}-1, \bar{m}\}, \text{where } c \in \{A, B\}$

- $\mathbb{F}(k)$ is a distribution such that:
 - multiple step jumps are less likely: increasing difficulty
 - Backward firms more likely to multiple jumps: advantage of backwardness [à la Gerschenkron (1951)]

detail

Step Jump Distribution, *F*(*k*)

Innovation by incumbents and entrants

► Incumbents:

$$C\left(x_{j}^{c};q_{j}\right)=q_{j}\alpha_{c}\left(x_{j}^{c}\right)^{\gamma_{c}}.$$

- z_i^c : R&D investment
- x_i^c : Poisson arrival rate:

Innovation by incumbents and entrants

Incumbents:

$$C\left(x_{j}^{c};q_{j}\right)=q_{j}\alpha_{c}\left(x_{j}^{c}\right)^{\gamma_{c}}.$$

- z_j^c : R&D investment
- x_i^c : Poisson arrival rate:
- ► Entrants:

$$C\left(\tilde{x}_{j}^{c};q_{j}\right)=q_{j}\alpha_{c}\left(\tilde{x}_{j}^{c}\right)^{\gamma_{c}}.$$

- Directed entry
- Drawing from same step-size distribution of domestic incumbent

Suppose the follower in line 2 innovates.

► Scenario 1: It closes the gap, but remains follower.

Suppose the follower in line 2 innovates.

► Scenario 2: It catches up.

Suppose the follower in line 2 innovates.

► Scenario 3: It leapfrogs.

Entry leads to similar dynamics ...

• ... but forces the domestic incumbent to exit.

Entry leads to similar dynamics ...

► Scenario 1: It closes the gap, but remains follower.

Entry leads to similar dynamics ...

► Scenario 2: It catches up.

Entry leads to similar dynamics ...

► Scenario 3: It leapfrogs.

Free Entry

Free Entry

$$\begin{aligned} r_{At}V_{Amt}\left(q_{t}\right) - \dot{V}_{Amt}\left(q_{t}\right) &= \max_{x_{Amt}} \left\{ \Pi\left(m\right)q_{t} - \left(1 - \tau^{A}\right)\alpha_{A}\frac{(x_{Amt})^{\gamma_{A}}}{\gamma_{A}}q_{t} \right. \\ &+ x_{Amt}\sum_{n_{t}=m+1}^{\bar{m}}\mathbb{F}_{m}\left(n_{t}\right)\left[V_{Ant}\left(\lambda^{(n_{t}-m)}q_{t}\right) - V_{Amt}\left(q_{t}\right)\right] \\ &+ \tilde{x}_{Amt}\left[0 - V_{Amt}\left(q_{t}\right)\right] \\ &+ \left(x_{B(-m)t} + \tilde{x}_{B(-m)t}\right)\sum_{n_{t}=-m+1}^{\bar{m}}\mathbb{F}_{-m}\left(n_{t}\right)\left[V_{A(-nt)}\left(q_{t}\right) - V_{Amt}\left(q_{t}\right)\right] \end{aligned}$$

Quantitative Analysis

Part 1. Estimation

Calibration strategy

- 17 parameters to be determined, 7 are estimated
 - ▶ 6 statistics on trade, growth, and innovation over 1975-81 ...
 - and the leadership distribution in 1981.
- Initiate the model in 1975 feeding in the leadership distribution and simulate until 1981

Table: Model fit				
Moment	Estimate	Target	Source	
1. TFP Growth U.S.	0.45%	0.55%	Coe et al. (2009) 1975-81	
2. TFP Growth FN	2.13%	1.82%	Coe et al. (2009) 1975-81	
3. R&D/GDP U.S.	1.65%	1.75%	OECD 1981	
4. R&D/GDP FN	1.85%	1.96%	OECD 1981	
5. Entry Rate U.S.	10%	10%	BDS 1977-81	
6. Export Share U.S.	7.11%	7%	WB 1975-81	
7. Patenting Distribution	n/a	n/a	See next slide.	

Identification: Evolution of Sector Shares

Model replicates adverse shift of leadership distribution toward smaller gaps over 1975-85.

Validation I: Steady-state Innovation Distribution

Figure. Data (left) vs Model Simulation (right)

In our simulation, $m^* \approx 10$.

Validation II: Implications on Entrant Innovation

Figure. Entrant Innovation. Model (left) vs data (right).

Quantitative Analysis

Part 2. Welfare Implications and Optimal Policy

Table 8: Observed and optimal U.S. R&D subsidy: 1981-2016

	Subsidy rate	Welfare gains 1981-2016
Observed R&D subsidy	19.2%	0.77%
Optimal R&D subsidy	69%	5.8%

Question:

What is the impact of a 40% increase in tariffs on welfare and innovation?

Questions:

► What is the impact of a 40% increase in tariffs on welfare and innovation?

Welfare (left) and innovation response (right) after 40% tariff rate.

Question:

► What is the optimal tariff rate for different policy horizons?

Question:

► What is the optimal tariff rate for different policy horizons?

Question:

► What is the optimal tariff rate for different policy horizons?

Questions:

- 1. What is the optimal subsidy rate for different time horizons?
- 2. How does it depend on openness?

Questions:

- 1. What is the optimal subsidy rate for different time horizons?
- 2. How does it depend on openness?

Conclusion

- Built a new dynamic general equilibrium model with endogenous productivity growth, international trade and strategic interaction between competing firms.
- Strategic interaction (competition) channel is quantitatively very important.
- ► Policies have different implications in different horizons:
 - ► Protectionist response, short-run gains, long-run losses
 - ► R&D subsidy leads to notable welfare gains in longer horizons
- Governing globalization? Yes but with innovation policy, not protectionism!
- To do: Brexit simulation?