Credit Supply and Firms' Productivity Growth

Francesco Manaresi and Nicola Pierri

Bank of Italy, Stanford University

13th CompNet Annual Conference Brussels, June 29, 2017

Introduction

- The financial and sovereign crises have witnessed significant TFP slowdown in Europe;
- Growth afterwards remained sluggish.

Introduction

Several explanations for recent TFP trends:

- "secular" stagnation
- faltering innovation
- slowdown in business dynamism
- output data fail to capture values of new digital products

Does credit supply play a role?

Research Question

Olley-Pakes decomposition of average productivity:

$$\sum_{i} \omega_{i,t} \cdot \mathsf{marketshare}_{i,t} = \frac{1}{N} \sum_{i} \omega_{i,t} + \mathsf{cov}\left(\tilde{\omega}_{i,t}, \mathsf{marketshare}_{i,t}\right)$$

- Credit Supply and TFP via Input Misallocation: Midrigan and Xu (2014), Gopinath et al. (2016).
- Yet, there are reasons to expect also a direct effect on firm-level TFP growth ω_{i,t}: through innovation (Amore et al. 2013), export (Paravisini et al. 2014), technology adoption, managerial practices.

The impact of credit supply shocks in the literature

Growing literature on identification of firm-level credit supply shocks from firm-bank matched data (Khwaja-Mian, Greenstone-Mas-Nguyen, Amiti-Weinstein)

- Labor: Chodorow-Reich (2014), Bentolilla et al. (2016).
- Investments: Gan (2007) Cingano et al. (2016), Acharyia et al. (2016); Bottero et al. (2016).
- So far, no study in this literature plugged results into a production function framework.
- ► Some contemporaneous papers on "credit constraints ⇒ TFP" (Dorr et al.; Duval et al.; de Sousa and Ottaviano)

This paper

- 1. Identifying firm-level changes in credit supply:
 - exploits bank-firm matched data + stickiness of lending relationships
- 2. Estimates TFP allowing for an effect of credit supply on TFP
 - productivity process allowed to be directly affected by credit supply
- 3. Estimates the effect of credit supply on TFP
 - ▶ main results: $\uparrow 1\%$ cred supply $\Rightarrow \uparrow 0.13\%$ productivity growth ▶ More Results
 - BotE calculation: a drop in credit growth of around 12 p.p. (2006-2008) ⇒ 25% aggregate reduction in TFP over the same period
 - persistent effect on productivity *levels*
- 4. Beyond measurement: channels
 - evidence that credit supply boosts Export & Innovation (R&D and Patenting)

Data

Credit Register: all credit relations in country

- report credit instruments, we use total
- focus on credit granted, yearly
- on average, per year:
 - 468,984 firms
 - 1,008 banks
 - 2.8 relationships per firm; 1,321 per bank

Balance-Sheets and Income Statement from CADS:

- large sample of small and large Italian manufacturers
- capital series reconstructed with perpetual inventory methodology
- sector-level deflators from National Accounts
 - ➤ ⇒ measure of productivity based on revenues, not quantity (Foster, Haltiwanger, and Syverson, 2008)

TFP and Credit among Italian Firms

Notes: Data from \sim 30K Italian firms from CADS dataset.

Estimated p.f.: Value Added Cobb-Douglas.

Identifying Credit Supply Shocks

Credit Supply: an Empirical Framework

Total credit granted to firm i at the end of year t is equal to

$$C_{i,t} = \sum_{b} C_{ib,t}$$

Assume, as a starting point:

$$\frac{C_{ib,t}}{C_{ib,t-1}} = \frac{C\left(\delta_t, U_{i,t}, U_{b,t}\right)}{C\left(\delta_{t-1}, U_{i,t-1}, U_{b,t-1}\right)}$$

Log-linearizing:

$$\Delta c_{ibt} = c_t + \Delta u_{it} + \Delta u_{bt} + \varepsilon_{ibt}$$

A Valid Decomposition?

We are assuming away:

- no assortative matching: firm demand is not bank-specific
- > no granularity in credit demand: firms are sufficiently small
- no spillover across banks because of substitutability/complementarities btw banks.

$$\Delta c_{ibt} = c_t + \Delta u_{it} + \Delta u_{bt} + \Delta u_{ibt} + d\Delta u_{b't} + \varepsilon_{ibt}$$

Tackling Identification Assumptions

assortative matching: test robustness of results against controlling for firm-bank (lagged) characteristics

- length of lending relationship
- share of collateral
- share of drawn credit
- interest rate charged
- **granularity in credit demand:** exclude top-borrowers
- ► spillover across banks: iterating procedure → include supply shocks of other banks (main bank or avg lenders) previously estimated

Resulting estimates of Δu_{bt} are very similar (*Corr*. \approx .90). All results on productivity confirmed.

From Bank Shocks to Firm Credit Supply

We compute firm-level credit supply shocks as:

$$\chi_{it} = \sum_{b} w_{ib,t-1} \Delta u_{bt}$$

where $w_{ib,t-1} = C_{ib,t-1}/C_{i,t-1}$

- Logic of w_{ibt}: Borrower-lender relations mitigate asymmetric info & limited commitment
 - valuables, costly to establish and sticky
 - ► ⇒ changes in lenders' credit supply affects financing ability of connected borrowers

Measuring Productivity

A simple theoretical model

Production function:

$$Y_{i,t} = \exp\{\omega_{i,t} + \epsilon_{i,t}^{\mathbf{Y}}\}F(L_{i,t}, K_{i,t}, M_{i,t}, \beta)$$

s.t.

$$K_{i,t} = I_{i,t} + (1 - \delta_t)K_{i,t-1}$$

 $\tilde{\pi}_{i,t} + B_{i,t} = D_{it} + I_{i,t} + B_{i,t-1} \left(1 + r_{i,t}\right) + Adjustment$

 $B_{i,t} \leq K_{i,t-1} \cdot \Gamma(\chi_{i,t}, \omega_{i,t})$

Taking logs:

$$y_{i,t} = \omega_{i,t} + \epsilon_{i,t}^{\mathbf{Y}} + f(k_{i,t}, l_{i,t}, m_{i,t}, \beta)$$

Assuming intermediates $m_{i,t}$ are fully flexible and monotonic is monotonic in $\omega_{i,t}$, we invert its demand function

$$\omega_{i,t} = m^{-1}(m_{i,t}, k_{i,t}, l_{i,t}, z_{i,t}, \chi_{i,t}) \Rightarrow$$

$$y_{i,t} = m^{-1}(m_{i,t}, k_{i,t}, l_{i,t}, z_{i,t}, \chi_{i,t}) + f(k_{i,t}, l_{i,t}, m_{i,t}, \beta) + \epsilon_{i,t}^{\mathsf{Y}} \Rightarrow$$

First stage estimation:

$$y_{i,t} = \Psi(m_{i,t}, k_{i,t}, l_{i,t}, z_{i,t}, \chi_{i,t}) + \epsilon_{i,t}^{\gamma}$$

Productivity law of motion

$$E\left[\omega_{i,t}|\mathcal{I}_{t-1}\right] = g_t\left(\omega_{t-1},\chi_{i,t-1}\right)$$

approximate g with a polynomial

$$\zeta_{i,t} := \omega_{i,t} - g\left(\omega_{t-1}, \chi_{i,t-1}\right)$$

$$\Rightarrow E\left[\zeta_{i,t}|\mathcal{I}_{t-1}\right] = 0$$

what does it mean?

- 1. ∄ persistent, firm-specific unobservable affecting input choices and productivity
 - violated if we did not include $\chi_{i,t}$.
- 2. shocks to ω are orthogonal to lagged variables
 - violated if e.g. company invested more in the past anticipating higher prod growth

Estimating moments

 $E\left[\zeta_{i,t}+\xi_{i,t}|\mathcal{I}_{t-1}\right]=0 \Rightarrow$

$$E\begin{bmatrix} l_{i,t-1} & i_{i,t-1} \\ i_{i}nv_{i,t-1} \\ i_{i}nv_{i,t-1} \\ y_{i,t} - f(k_{i,t}, l_{i,t}, m_{i,t}, \beta) - g(\Psi_{i,t-1} - f(k_{i,t-1}, l_{i,t-1}, m_{i,t}, \beta), \chi_{i,t-1}, G_{t}) | \begin{array}{c} l_{i,t-1} \\ \Psi_{i,t-1} \\ m_{i,t-1} \\ \vdots \\ \ddots \end{array}$$

- \Rightarrow estimate, for each industry, both β and the ancillary coefficients G_t
 - value added: average $\beta_k \approx 0.35$ and $\beta_l \approx 0.64$
 - net revenues: average $\beta_k \approx 0.03$, $\beta_l \approx 0.10$ and $\beta_m \approx 0.87$

Results

Credit supply and input & output growth

For each (log) input or output measure we estimate:

$$\Delta x_{i,t} = \psi_i + \psi_{p,s,t} + \gamma \chi_{i,t} + \eta_{i,t}$$

VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)
	Δ <i>va</i>	Δy	Δk	Δ/	Δn	Δm
$\chi_{i,t}$	0.144***	0.0477***	0.0572***	-0.0271	-0.0126	0.0126
	(0.0227)	(0.0158)	(0.0192)	(0.0184)	(0.0127)	(0.0167
Observations	293k	293k	293k	293k	293k	293k

All sectors

Credit supply and productivity

Now we can run:

$$\Delta\omega_{i,t} = \mathbf{a}_i + \psi_{\mathbf{p},s,t} + \gamma\chi_{i,t} + \eta_{i,t}$$

	(1)	(2)	(3)	(4)
$\chi_{i,t}$	0.133*** (0.0241)	0.138*** (0.0205)	0.0423*** (0.00820)	0.0510*** (0.00749)
Output measure	va	va	у	у
Functional Form	CD	TL	CD	TL
Observations	278k	258k	286k	272k
R-squared	0.198	0.339	0.159	0.271

All sectors

On the effect of credit supply on productivity

- Results show that the effect is significant and positive: a 1 p.p. increase in credit supply triggers VA productivity by 0.13 p.p.
- Results less different between VA and revenues productivity, once effects are standardized.
- Effect stronger for smaller firms, and in manufacturing.

Estimated effect is remarkably robust

Results are unaffected by

- inclusion of firm-level controls;
- use of different Fixed-Effects structure (test for correlated unobservables);
- estimate of bank shocks net of spillovers & controlling for assortative matching btw firms and banks;
- exclusion of top-3% ("granular") borrowers;
- controlling for impact of credit supply on firm's demand \Rightarrow firms involved into global and local VC are NOT differently affected Results
- use of a different identification strategy for credit supply shocks: the 2007-2008 collapse of the interbank mkt.

Persistency and Pre-trend

$$\omega_{i,t} = \psi_i + \psi_{p,s,t} + \sum_{j=3}^{-3} \gamma_j \chi_{i,t-j} + \eta_{i,t}$$

No significant pre-trend, levels remain persistently higher after shock.

Effects over time

$$\Delta\omega_{i,t} = \psi_i + \psi_{\rho,s,t} + \sum_t \gamma_t \chi_i, t + \eta_{i,t}$$

Effect peaks in 2009, but significant also before crisis

Why Does Credit Availability Enhance Productivity Growth?

Additional Data

INVIND

- survey conducted from '84 on panel of firms
- mostly>50 employees
- some waves have info on innovation and export activities
- neither questions nor respondents are fixed over time

Patents

- Patents registered at EPO by all Italian firms;
- Matched to fiscal codes by the Italian Chamber of Commerce (Unioncamere);
- Priority Dates : 1999-2012.

Possible Mechanisms? ICT adoption

Number of PC used by the firm available for years 1999, 2000, 2001

 do firms become more ICT intense when credit constraints are more relax

$$\log\left(\frac{PC}{employees}\right)_{i,t} = \gamma_i + \gamma_t + \alpha\chi_{i,t} + \eta_{i,t}$$

and

$$\log\left(\frac{\textit{PC}}{\textit{K}}\right)_{i,t} = \gamma_i + \gamma_t + \alpha \chi_{i,t} + \eta_{i,t}$$

Results

No statistically significant evidence of positive effect

	(1)	(2)	(3)	(4)
VARIABLES	$\log\left(\frac{PCs}{employees}\right)$	$\log\left(\frac{PCs}{employees}\right)$	$\log\left(\frac{PCs}{K}\right)$	$\log\left(\frac{PCs}{K}\right)$
Xi.t	0.117	0.302	0.257	0.513
<i></i>	(0.149)	(0.282)	(0.220)	(0.379)
Obs	6541	1969	6232	2193
Sample	All	Exclude top 25%	All	Exclude top 25%
R^2	0.935	0.932	0.939	0.921
	Clustered	standard errors in pa	arentheses	
	Firm	and year FE are incl	luded	
	*** p<	<0.01, ** p<0.05, *	p<0.1	

Possible Mechanisms? - R&D and Export

High quality information on size of R&D investment from INVIND

- we consider dicotomic variables
 - exporter vs non-exporter (dummy Expt_{i,t})
 - positive versus zero R&D investment
- we have two measures of R&D
 - ► R&D_{i,t}
 - ► RD&Etal_{i,t}

LPM with firm fixed effect:

$$Pr(d_{i,t} = 1) = \gamma_i + \gamma_t + \alpha \chi_{i,t} + \eta_{i,t}$$

where $d_{i,t}$ is any of the dummies described above

Results

Companies are more likely to start (less to stop) exporting or doing R&D (only one of our measures) when credit availability increases

	(1)	(2)	(3)
VARIABLES	Expt _{i,t}	R&D _{i,t}	RD&Etal _{i,t}
$\chi_{i,t}$	0.152*	0.238*	-0.064
	(0.085)	(0.128)	(0.105)
Obs	13,249	5,991	15,177
Clustered s	standard e	rrors in pa	rentheses
Firm	and year F	E are incl	uded
*** p<	0.01, ** p	o<0.05, *	p<0.1

Possible Mechanisms? Financial constraints to innovation

Innovative effort is much broader than just formal R&D or ITC adoption

- 2011 survey wave investigate which were the main constraints to innovative effort for previous year
- one question ask how important were difficulties to collect external funds in limiting innovation on a four-items scale
- FinCon_{i,2010} equal to one iff difficulties to get external funds is thought to be "somehow important" or "very important" as obstacle to innovation

Result - Financial constraints to innovation

Linear Probability Model, using cross section

$$Pr(FinCon_{i,2010} = 1) = \gamma_{s,p} + \alpha \chi_{i,2010} + \eta_{i,t}$$

Estimates

- ▶ $\hat{\alpha} = -1.111^*$
- ▶ tstat = −1.75
- ▶ N=628
- ► caveats: only regression with \(\chi_{i,t}\) without firm FE (we include province \(\times \) sector)
- \Rightarrow Innovation efforts are less likely to be constraints by lack of external funds when firms just received a positive credit shock

Possible Mechanisms? Patenting

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , ,	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,.
	(1)	(2)	(3)
$\chi_{i,t}$	0.032***	0.038**	0.036**
	(0.010)	(0.018)	(0.017)
	NI	V	V
FIRM FE	IN	Ŷ	Ŷ
Sector FE	Y	Y	Ν
Province FE	Y	Y	Ν
Year FE	Y	Y	Ν
Sec-Prov-Year FE	Ν	Ν	Y
Obs	241K	241K	241K
Clustered star	ndard errors	in parenth	eses
Firm and	l year FE are	e included	
*** p<0.0	01, ** p<0.0	05, * p<0.	1

$$#Pat_{i,t} = a_i + \gamma_{s,p,t} + \alpha \chi_{i,t} + \varepsilon_{i,t}$$

Conclusion

In this paper we

- exploit banks-firms connections to measure firm-specific shocks to credit supply
- estimate a simple model of production with heterogeneous credit frictions
- show that productivity growth is boosted by increase in credit supply
- document that productivity enhancing activities are stimulated by credit availability

What's next:

- improve our identification of possible mechanisms
- compute relative importance of credit frictions for allocative efficiency vs productivity growth

Thank You

francesco.manaresi@bancaditalia.it

All sectors

VARIABLES	(1) Δ <i>va</i>	(2) Δy	(3) Δk	(4) Δ/	(5) Δn	$\binom{6}{\Delta m}$
$\chi_{i,t}$	0.106***	0.0424***	0.0531***	0.00461	0.00144	0.0233*
	(0.0182)	(0.0121)	(0.0144)	(0.0140)	(0.0104)	(0.0125)
Observations	552k	552k	552k	552k	552k	551k
R-squared	0.232	0.311	0.264	0.276	0.324	0.312

	(1)	(2)	(3)	(4)
VARIABLES	$\Delta \omega_{i,t}$	$\Delta \omega_{i,t}$	$\Delta \omega_{i,t}$	$\Delta \omega_{i,t}$
Xi t	0.0890***	0.106***	0.0173***	0.0244***
, ci, t	(0.0175)	(0.0183)	(0.00523)	(0.00547)
Observations	552k	552k	551k	551k
R-squared	0.179	0.191	0.192	0.212
Output measure	va	va	revenues	revenues
Functional Form	CD	TL	CD	TL

Back - Productivity

Back - Inputs/Outputs

Direct Effect on Demand

Bank might directly affect borrowers demand because of correlation between lenders of suppliers and lenders of clients (e.g. local effect). Then we run

$$\Delta\omega_{i,t} = \psi_t + \psi_i + \gamma_0\chi_{i,t} + \gamma_1 \frac{export_{i,t-2}}{y_{i,t-2}} + \gamma_2\chi_{i,t} \cdot \frac{export_{i,t-2}}{y_{i,t-2}} + \eta_{i,t}$$

 γ_2 capture the differential effect of the shock on exporters

- ▶ less likely foreign buyers land from same back $\Rightarrow \gamma_2 < 0$
- results: not statistically different from zero
- \blacktriangleright \Rightarrow effects does not come from direct effect on mark up

▶ Back

"Visualizing" the relevant variation: RHS

Evolution of $\chi_{i,t}$ for a 5% random sample of manufacturers

- Right panel shows residualized values after taking out FEs
- no clear pattern over time: $\chi_{i,t}$ makes sense only relatively

"Visualizing" the relevant variation: LHS

Evolution of $\omega_{i,t}$ for a 5% random sample of manufacturers

Right panel shows residualized values after taking out FEs

"Visualizing" the relevant variation: LHS

Evolution of $\omega_{i,t}$ for a 5% random sample of manufacturers

Right panel shows residualized values after taking out FEs

Histogram of $\Delta \omega_{i,t}$

Value Added - Cobb Douglas

