COVID and Productivity in Europe: A Responsiveness Perspective

Russell Cooper¹ Wolfram Horn¹ Leonardo Indraccolo¹

¹European University Institute

12th CompNet Annual Conference 19/20 October 2023

We gratefully acknowledge financial support by the European Investment Bank through the STAREBEI program. Any errors remain those of the authors. The findings, interpretations and conclusions presented in this document are entirely those of the authors and should not be attributed in any manner to the European Investment Bank.

Motivation

- Covid-19 was large common shock with asymmetric impact across countries
 - 2020 Real GDP growth in big-4 EA countries: Mean: -7.95%; SD: 3.18%
- Governments across Europe intervened with different labor market policies
- Firms' responsiveness to idiosyncratic shocks matters for:
 - Aggregate dynamics
 - Design and effectiveness of firm-oriented stabilization policies

This Paper

1. Q: Are there differences in firm responsiveness across Europe?

- Estimate a firm dynamics model with adjustment costs for big-4 EA countries
 - Estimation separately for each country
 - o Responsiveness measures estimated in data and included as moments
- Use model to understand cross-country diff. in responsiveness to idiosyncratic shocks

This Paper

1. Q: Are there differences in firm responsiveness across Europe?

- Estimate a firm dynamics model with adjustment costs for big-4 EA countries
 - Estimation separately for each country
 - o Responsiveness measures estimated in data and included as moments
- Use model to understand cross-country diff. in responsiveness to idiosyncratic shocks

2. Q: How do these differences shape the aggregate response to Covid-19?

- Extend model with aggregate Covid-19 shock and two types of labor market stab. policies
- Simulate effects of aggregate shock and policies on:
 - Aggregate employment
 - Firm exit
 - Productivity
- Disentangle effect of shock and policy support

Plan

1./ Data

- 2./ Model & Estimation
- 3./ Quantitative Exercise
 - 3.1./ Shock and Policy Support
 - 3.2./ Importance of Targeted Policy Support
 - 3.3./ Role of Heterogeneous Beliefs
- 4./ Conclusion

Data

Data

- Bureau van Dijk's Orbis
 - Private and public firms
 - Sample: Unbalanced panel of manufacturing firms, 2014-2018
 - 4 countries: France, Germany, Italy, Spain
- Eurostat's Structural Business Statistics
 - Employment-weighted exit rate: 1-digit manufacturing sector

Summary Moments

Model

Key ingredients

- Partial equilibrium model of firms' dynamic labor demand with
 - Discrete time, annual frequency
 - Firms are subject to idiosyncratic profitability shocks
 - Time to build for labor
 - Convex and non-convex adjustment costs for labor
 - Endogenous entry and exit

• Exit Decision:

 $V(A, e) = max(V^{c}(A, e), 0)$

• A = AR(1) profitability shock; e = current employment level

• Exit Decision:

 $V(A, e) = max(V^{c}(A, e), 0)$

• A = AR(1) profitability shock; e = current employment level

• Conditional dynamic labor demand: $\forall (A, e)$

$$\mathsf{V}^{\mathsf{c}}(\mathsf{A}, \boldsymbol{e}) = \max_{\boldsymbol{e}'} \mathsf{R}(\mathsf{A}, \boldsymbol{e}) - \omega(\boldsymbol{e}) - \mathsf{C}(\boldsymbol{e}', \boldsymbol{e}) - \mathsf{T} + \beta \mathsf{E}_{\mathsf{A}'|\mathsf{A}} \mathsf{V}(\mathsf{A}', \boldsymbol{e}')$$

• $R(\cdot) = Ae^{\alpha}$; $\omega(\cdot) =$ compensation; $C(\cdot) =$ adjustment costs; T = fixed operating costs

• Exit Decision:

 $V(A, e) = max(V^{c}(A, e), 0)$

• A = AR(1) profitability shock; e = current employment level

• Conditional dynamic labor demand: $\forall (A, e)$ • Details

 $V^{c}(A, e) = \max_{e'} R(A, e) - \omega(e) - C(e', e) - T + \beta E_{A'|A} V(A', e')$

R(·) = Ae^α; ω(·) = compensation; C(·) = adjustment costs; T = fixed operating costs
 Adjustment costs:

$$\mathbf{C}\left(\mathbf{e}',\mathbf{e}\right) = \underbrace{\frac{\nu}{2}\left(\frac{e'-e}{e}\right)^{2}e}_{\text{quadratic costs}} + \underbrace{F_{p}\mathbb{I}_{\left(e'-e>0\right)}}_{\text{fixed hiring costs}} + \underbrace{F_{m}\mathbb{I}_{\left(e'-e<0\right)}}_{\text{fixed firing costs}}$$

• Exit Decision:

 $V(A, e) = max(V^{c}(A, e), 0)$

• A = AR(1) profitability shock; e = current employment level

Conditional dynamic labor demand: ∀(A, e)

$$\mathsf{V}^{\mathsf{c}}(\mathsf{A}, \mathbf{e}) = \max_{\mathbf{e}'} \mathsf{R}(\mathsf{A}, \mathbf{e}) - \omega(\mathbf{e}) - \mathsf{C}(\mathbf{e}', \mathbf{e}) - \mathsf{T} + \beta \mathsf{E}_{\mathsf{A}'|\mathsf{A}} \mathsf{V}(\mathsf{A}', \mathbf{e}')$$

• $R(\cdot) = Ae^{\alpha}$; $\omega(\cdot) =$ compensation; $C(\cdot) =$ adjustment costs; T = fixed operating costs

• Entry Decision:

$$E_{A|s}V(A, \underline{e}) \geq 0$$

• <u>e</u> = lowest employment level; s = profitability signal (same process as A)

Estimation

Parameters and Estimation Strategy

• Parameters:

Revenue Function		Adj	ustment	Costs	Fixed Operating Costs	
α	ρ	σ_η	ν	F _P	F _M	T

• Simulated Method of Moments (country-by-country):

$$J = \min_{(\vartheta)} \left(\mathsf{M}^{\mathsf{s}}(\vartheta) - \mathsf{M}^{\mathsf{d}} \right)' \mathsf{W} \left((\mathsf{M}^{\mathsf{s}}(\vartheta) - \mathsf{M}^{\mathsf{d}}) \right)$$

- Structurally estimate revenue function (indirect inference)
- Include responsiveness coefficients as moments
- Weighting matrix: W = I
- No aggregate shock; parameter values s.t. \exists stationary distribution over (A, e)

Moments

- Revenue Function and TFP(R) innovations:
 - TFPR log Revenue_{i,t} = α log Employment_{i,t} + $\sum_{t=2014}^{2018} \mathbb{D}_t + \varepsilon_{i,t}$

AR(1) $\varepsilon_{i,t} = \rho \varepsilon_{i,t-1} + \eta_{i,t}, \quad \eta_{i,t} \sim \mathcal{N}(0, \sigma_{\eta}^2)$

Moments

• Revenue Function and TFP(R) innovations:

TFPRlog Revenue_{i,t} = α log Employment_{i,t} + $\sum_{t=2014}^{2018} \mathbb{D}_t$ + $\varepsilon_{i,t}$ **AR(1)** $\varepsilon_{i,t} = \rho \varepsilon_{i,t-1} + \eta_{i,t}, \quad \eta_{i,t} \sim \mathcal{N}(0, \sigma_{\eta}^2)$

• Responsiveness:

Ext. Margin $Pr(\mathbb{1}^{adj} = 1) = c + \beta_1^{ext} \eta_{i,t-1} + \beta_2^{ext} \eta_{i,t-1}^2 + \gamma Employment_{i,t-1} + \nu_{i,t}$ Int. Margin $g_{i,t}^{emp}|_{\mathbb{1}^{adj}=1} = c + \beta_1^{int} \eta_{i,t-1} + \beta_2^{int} \eta_{i,t-1}^2 + \gamma Employment_{i,t-1} + \zeta_{i,t}$ $\mathbb{1}^{adj} = \begin{cases} 0 & \text{if } g_{i,t}^{emp} \in [-2.5\%, +2.5\%] \\ 1 & \text{otherwise} \end{cases}; g_{i,t}^{emp} = \frac{e_{i,t} - e_{i,t-1}}{.5 + (e_{i,t} + e_{i,t-1})} \end{cases}$

Moments

• Revenue Function and TFP(R) innovations:

TFPRlog Revenue_{i,t} = α log Employment_{i,t} + $\sum_{t=2014}^{2018} \mathbb{D}_t$ + $\varepsilon_{i,t}$ **AR(1)** $\varepsilon_{i,t} = \rho \varepsilon_{i,t-1} + \eta_{i,t}, \quad \eta_{i,t} \sim \mathcal{N}(\mathbf{0}, \sigma_{\eta}^2)$

• Responsiveness:

$$\begin{aligned} \text{Ext. Margin} \quad & Pr(\mathbb{1}^{adj} = 1) = c + \beta_1^{ext} \eta_{i,t-1} + \beta_2^{ext} \eta_{i,t-1}^2 + \gamma \text{Employment}_{i,t-1} + \nu_{i,t} \\ \text{Int. Margin} \quad & g_{i,t}^{emp}|_{\mathbb{1}^{adj}=1} = c + \beta_1^{int} \eta_{i,t-1} + \beta_2^{int} \eta_{i,t-1}^2 + \gamma \text{Employment}_{i,t-1} + \zeta_{i,t} \\ \\ & \mathbb{1}^{adj} = \begin{cases} 0 & \text{if } g_{i,t}^{emp} \in [-2.5\%, +2.5\%] \\ 1 & \text{otherwise} \end{cases}; g_{i,t}^{emp} = \frac{e_{i,t} - e_{i,t-1}}{.5 * (e_{i,t} + e_{i,t-1})} \end{aligned}$$

• Exit margin:

Exit Avg. employment-weighted exit rate in 1-digit manufacturing sector

Quantitative Exercise: Covid-19 Shock and Policies

Quantitative Exercise: Set up

• Extend model to include aggregate state (S)

- $\circ \ \mathcal{S} \in \{\text{normal}, \text{disaster}\} \Rightarrow \mathsf{R}(\mathsf{A}, e, \mathcal{S}) = \lambda_{\mathcal{S}} \mathsf{A} e^{\alpha}$
- $\circ~\lambda$ captures both demand and labor supply shock

• *S* follows 2-state Markov process:
$$Q(S'|S) = \begin{bmatrix} \tau_{nn} & \tau_{nd} \\ \tau_{dn} & \tau_{dd} \end{bmatrix}$$

- Types of policies
 - Short-time work scheme (STW)/Hours sharing
 - 'No-firing' clauses (Italy)

Quantitative Exercise: Simulation

- Start economy in stationary dist. of productivity and employment in normal times
- Simulate two versions of economy for 10 time periods:
 - 1. No Covid-19: Economy evolves always in normal state
 - 2. Covid-19: Impose disaster state for one period in period 2
- Compare 1. and 2. to quantify the effect of shock and policies
- Baseline includes country-specific policy interventions
 - Policies linked to shock
 - Targeted to support least productive fraction of firms
- Evaluate impact of policies by removing them

Covid-19 Shock and Policy Support

Covid-19 Shock and Policy Support: Employment Response

Figure: Employment Responses

• Policy support reduces employment losses by up to \sim 1.9 pp.

Covid-19 Shock and Policy Support: Employment Response

(a) C-19 shock w/o policy support

(b) C-19 shock w/ policy support

- Covid-19 shock adversely affects aggregate productivity
- Effect of shock on productivity not impacted much by policies

Productivity Implications: Mechanism

(a) Survivors vs. Exiters

Figure: Productivity Implications: Role of Adjustment Costs

• "Cleansing effect" present...

Productivity Implications: Mechanism

(a) Survivors vs. Exiters

(b) Survivors: No Adjustment Costs

Figure: Productivity Implications: Role of Adjustment Costs

- "Cleansing effect" present...
- ... but dominated by adjustment costs

Extensions

- The Importance of Targeted Policy Support
 Untargeted Support
- The Role of Heterogeneous Beliefs Beliefs

Conclusion

- Focus on cross-country diff. among four major EA countries
- Role of firm responsiveness for response to Covid-19 shock and policies

Results

- Estimated adjustment costs not that different across countries
- Policy Support mattered considerably:
 - Exit \downarrow (up to \sim 1.2 pp.)
 - Employment loss \downarrow (up to \sim 1.9 pp.)
 - Shock adversely affects aggregate productivity
 - Limited effects of policy on productivity
- Targeting of support important
- Dispersion of beliefs matters

Appendix

Summary Moments

		Job Growth				Revenue Function Res			Res	sponsiveness Regressions				
	μ_e	inaction	JC10+	JD10+	JC+5	JD+5	$\tilde{\alpha}$	$\tilde{ ho}$	$\tilde{\sigma}$	β_1^{int}	β_2^{int}	β_1^{ext}	β_2^{ext}	Exit Rate
France	17	0.329	0.132	0.047	0.255	0.125	1.040	0.920	0.301	0.343	0.255	-0.005	0.191	0.698
Germany	35	0.331	0.081	0.032	0.232	0.069	1.012	0.926	0.299	0.168	0.053	0.021	0.190	0.210
Italy	9	0.350	0.175	0.084	0.293	0.154	1.042	0.870	0.365	0.242	0.022	0.002	1.090	0.882
Spain	6	0.277	0.237	0.071	0.416	0.132	1.091	0.885	0.352	0.300	0.054	0.019	0.174	1.442

Table: Data Moments

Firm Problem: Environment

• **Revenue function**: $R(A, e) = Ae^{\alpha}$

• $e = \text{employment}, \alpha = \text{labor coefficient}, A = AR(1) \text{ profitability shock}$

• Compensation function: $\omega(e) = w_0 \times e$

• w_0 = wage rate

• Adjustment costs:

$$C(e', e) = \underbrace{\frac{\nu}{2} \left(\frac{e'-e}{e}\right)^2 e}_{\text{quadratic costs}} + \underbrace{\frac{F_p \mathbb{I}_{(e'-e>0)}}_{\text{fixed hiring costs}}}_{\text{fixed hiring costs}} + \underbrace{F_m \mathbb{I}_{(e'-e<0)}}_{\text{fixed firing costs}}$$

• Fixed operating costs T to generate firm exit

Back

Model Fit

		Reve	Revenue Function		Responsiveness			Exit	Fit
		$\tilde{\alpha}$	$\tilde{ ho}$	$\tilde{\sigma}_{\eta}$	$eta_{1}^{\textit{int}}$	$\beta_2^{\rm int}$	β_1^{ext}	ξ	
France	Data Model	1.040 0.896	0.920 0.895	0.301 0.173	0.343 0.222	0.255 0.032	-0.005 -0.005	0.698 0.476	1.189
Germany	Data Model	1.012 0.808	0.926 0.928	0.299 0.144	0.168 0.209	0.053 0.047	0.021 0.019	0.210 0.386	1.089
Italy	Data Model	1.042 0.815	0.870 0.902	0.365 0.182	0.242 0.258	0.022 0.022	0.002 0.002	0.882 0.563	0.437
Spain	Data Model	1.091 0.828	0.885 0.880	0.352 0.149	0.300 0.302	0.054 0.056	0.019 0.019	1.442 0.875	0.546

Table: Moments

Back Parameters Adjustment costs Identification

Quantitative Exercise: Calibration/Parameterization

	E	Employment drop		
	Data	Model	Fit	•
Germany	-2.40	-2.40	3.719e-06	0.79
France	-0.79	-0.79	2.123e-06	0.90
Italy	-1.10	-1.11	2.046e-04	0.87
Spain	-5.71	-5.73	7.431e-04	0.79

Table: Covid Shock and Policies

• Covid-19 shock:

- $\circ \lambda$ calibrated to match manufacturing employment drop in 2020 (with policy support)
- Transition matrix Q(S'|S): $\tau_{nd} = 0.01$, $\tau_{dd} = \rho$

Quantitative Exercise: Calibration/Parameterization

	STW (%)	(%) Hours sharing (%)		Employment drop			
			Data	Model	Fit		
Germany	15.8	28.1	-2.40	-2.40	3.719e-06	0.79	
France	14.0	31.0	-0.79	-0.79	2.123e-06	0.90	
Italy	57.2	13.0	-1.10	-1.11	2.046e-04	0.87	
Spain	38.0	24.1	-5.71	-5.73	7.431e-04	0.79	

Table: Covid Shock and Policies

• Covid-19 shock:

 $\circ \lambda$ calibrated to match manufacturing employment drop in 2020 (with policy support)

• Transition matrix Q(S'|S): $\tau_{nd} = 0.01$, $\tau_{dd} = \rho$

• Policies:

- STW (%): Fraction of firms using STW; Hours sharing (%): Avg. fraction of hours cut
- 'No firing' restriction: $F_m = \infty$

Estimation: Parameters

Country	Parameters						
	ν	Fp	F _m	α	ρ	σ	Т
France	4.794	0.122	0.019	0.518	0.959	0.594	0.238
	(0.175)	(0.004)	(0.002)	(0.003)	(0.005)	(0.020)	(0.013)"
Germany	5.250	0.220	0.019	0.519	0.961	0.506	0.216
	(0.206)	(0.005)	(0.002)	(0.024)	(0.002)	(0.009)	(0.010)
Italy	5.008	0.300	0.028	0.500	0.950	0.570	0.260
	(0.170)	(0.003)	(0.000)	(0.005)	(0.002)	(0.010)	(0.003)
Spain	4.391	0.159	0.024	0.542	0.965	0.559	0.335
	(0.105)	(0.004)	(0.000)	(0.011)	(0.001)	(0.008)	(0.002)

Table: Parameters

Notes — The parameters here are: ν = quadratic adjustment cost, (F_P , F_M) = fixed hiring and firing costs as a fraction of average revenue, (α , ρ , σ) = curvature of revenue functions, serial correlation of profitability shocks and the standard deviation of the innovation to profitability shocks. The denotes the fixed operating costs.

Estimation: Adjustment Costs

Country	Fixed costs					
	Fixed hiring costs (F_p)	Fixed firing costs (F_m)				
France Germany Italy Spain	0.823% 1.090% 1.481% 1.076%	5.248% 12.360% 15.982% 7.166%				

Table: Fixed Adjustment Costs Incurred Relative to Revenue

Notes — This table reports fixed costs (computed as F_m and F_p times average revenues) as fraction of average revenues of firms that actually hire or fire.

Estimation: Identification

Parameter			M	oments			
	$\tilde{\alpha}$	$ ilde{ ho}$	$ ilde{\sigma}_\eta$	β^{int}	β_2^{int}	β^{ext}	ξ
u	0.376	-0.049	0.089	0.212	-39.575	-4.743	-0.332
F _m	0.428	-0.068	0.093	-1.133	-58.219	-15.492	-2.235
F_p	-0.086	0.013	-0.002	-0.261	-9.696	-2.618	0.215
α	-0.975	-0.229	-0.084	-4.679	-149.770	178.833	14.118
ρ	0.162	0.770	-11.705	5.769	-20.104	-161.353	0.900
σ	-0.999	-0.148	1.089	-4.834	-108.175	157.516	14.702
Т	-1.494	-0.138	-0.116	-4.918	-124.912	201.343	15.030

Table: Elasticities of Moments with respect to Parameters

▲ Back

Revised Firm Optimization Problem

• Revised firm problem

 $V(A, e, S) = max(V^{c}(A, e, S), 0)$

$$V^{c}(A, e, S) = \max_{e'} R(A, (1 - \tau(S))e, S) - \omega(e)(1 - \tau(S))$$
$$-C(e', e) - T + \beta E_{A', S'|A, S} V(A', e', S')$$

Back

Covid-19 Shock and Policy Support: Employment Response

Covid-19 Shock and Policy Support: Exit

Table: Employment-weighted exit rates (F	Percent)
--	----------

	Germany	Italy
Normal times	0.386	0.563
Shock with full policy support	1.933	1.768
Shock with only short-time work policy	1.933	1.760
Shock with only 'No-firing' policy	_	2.154
Shock without policy support	3.235	2.073

Note—This table summarizes the effect of the policy support on employment losses due to exit.

- Policy support reduces empl.-weighted exit rates by up to \sim 1.7 pp.
- 'No-firing' policy can increase employment losses due to exit

Covid-19 Shock and Policy Support: Exit

	France	Spain
Normal times	0.463	0.875
Shock with full policy support	0.538	4.662
Shock with only short-time work policy	0.538	4.662
Shock with only 'No-firing' policy	-	-
Shock without policy support	1.410	6.276

Table: Employment-weighted exit rates (Percent)

Note—This table summarizes the effect of the policy support on employment losses due to exit.

▲ Back

Covid-19: Productivity Implications - Italy

Aggregate Productivity and Cleansing Effect

(a) Covid-19 shock w/o policy support

(b) Covid-19 shock w/ policy support

(c) Survivors vs. Exiters

Covid-19: Productivity Implications - France

Aggregate Productivity and Cleansing Effect

(a) Covid-19 shock w/o policy support

(b) Covid-19 shock w/ policy support

(c) Survivors vs. Exiters

Covid-19: Productivity Implications - Spain

Aggregate Productivity and Cleansing Effect

(a) Covid-19 shock w/o policy support

(b) Covid-19 shock w/ policy support

(c) Survivors vs. Exiters

Covid-19: Productivity Implications

Aggregate Productivity and Misallocation

		Normal times	Shock	Shock + targeted pol. supp.
Germany	APL	0.211	0.169	0.168
	Std	0.098	0.079	0.079
Italy	APL	0.384	0.339	0.336
	Std	0.201	0.179	0.179

Table: Productivity measures

- Adj. costs create misallocation (also in normal times)
- Adj. costs mute effect of shock and policies on (mis-)allocation

Covid-19: Productivity Implications

Aggregate Productivity and Misallocation

		Normal times	Shock	Shock + targeted pol. supp.	
France	APL	0.283	0.258	0.257	
	Std	0.151	0.138	0.139	
Spain	APL	0.491	0.400	0.395	
	Std	0.263	0.214	0.215	

Table: Productivity measures

The Importance of Targeted Policy Support

▲ Back

The Importance of Targeted Policy Support

Employment Response

- Untargeted: STW randomly allocated to same fraction of firms
- Targeting policy support reduces employment loss by up to ${\sim}45\%$

The Importance of Targeting Policy Support

Employment Response

Role of Heterogeneous Beliefs

▲ Back

Role of Heterogeneous Beliefs

Set-up

- Baseline: firms have identical beliefs, persistent shock
- Reality from survey: very dispersed beliefs
- Introduce dispersion: mean-preserving spread around baseline beliefs
 - optimists: ρ = 0.93
 - pessimists: $\rho = 0.99$
 - 50% of each type
- Study response to one period shock

Back

Role of heterogeneous beliefs

Employment Response

(a) Germany: Employment

Figure: Homogeneous versus dispersed beliefs

• Belief dispersion matters for aggregate employment and exit rates

Role of heterogeneous beliefs

Employment Response

• Belief dispersion matters for aggregate employment and exit rates

Role of heterogeneous beliefs: Italy

Employment Response

(a) Italy: Dispersion

(b) Italy: Optimists vs. Pessimists

Figure: Homogeneous versus dispersed beliefs

Role of heterogeneous beliefs: France

Employment Response

(a) France: Dispersion

(b) France: Optimists vs. Pessimists

Figure: Homogeneous versus dispersed beliefs

Role of heterogeneous beliefs: Spain

Employment Response

(a) Spain: Dispersion

(b) Spain: Optimists vs. Pessimists

Figure: Homogeneous versus dispersed beliefs

Role of heterogeneous beliefs: Germany

Size-weighted exit rates

Role of heterogeneous beliefs: Italy

Size-weighted exit rates

(a) Exit: Dispersion

(b) Exit: Optimists vs. Pessimists

Role of heterogeneous beliefs: France

Size-weighted exit rates

(a) Exit: Dispersion

(b) Exit: Optimists vs. Pessimists

Role of heterogeneous beliefs: Spain

Size-weighted exit rates

Productivity Thresholds

(d) Spain

Role of Adjustment Costs

		Normal Times		Shock	
		AC	No AC	AC	No AC
Germany	APL	0.211	0.183	0.169	0.181
	Std	0.098	0.029	0.079	0.029
Italy	APL	0.384	0.341	0.339	0.337
	Std	0.201	0.079	0.179	0.079

Table: Productivity measures