# Price-cost margins, fixed costs and excess profits

Filip Abraham<sup>1, 2</sup>, Yannick Bormans<sup>1</sup>, Jozef Konings<sup>1,3,4</sup> and Werner Roeger<sup>5</sup>

<sup>1</sup>KU Leuven, VIVES <sup>2</sup> Vlerick Business School <sup>3</sup>University of Liverpool <sup>4</sup>Nazarbayev University <sup>5</sup>DIW Berlin

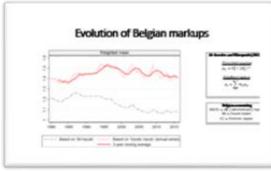
## KU LEUVEN



## Introduction

- Concerns about rise of US markups (De Loecker, Eeckhout & Unger, 2020).
  - Interpreted as rising product market power, and linked to other macroeconomic trends.
- However, still heavily debated at the conceptual and empirical level
  - Diverse reasons for rising markups which are not necessarily linked to rising market power (Berry, Gaynor & Scott, 2019), among which fixed costs
  - De Loecker and Warzynski (2012) is the dominant approach, and typically uses COGS and SG&A as respectively variable and fixed inputs.
    - Accounting practices, among which reclassification, might have changed (Traina, 2018; Karabarbounis and Neiman, 2018)
    - Basu (2019) is skeptical that the variable input choice issue can be adressed by current data availability
- Introduce a novel methodology building on Hall (1988) and Roeger (1995)
  - Based on Solow residuals: primal (Q) and dual (P) revenue and cost-based
  - Jointly estimate price-cost margins and fixed costs

|          |   | 1      | Contraction in | - |
|----------|---|--------|----------------|---|
|          | m | $\sim$ | A=274A         |   |
| $\sim$   | ~ |        | ÷              | _ |
| <u> </u> | / |        |                |   |



| Belgian markups over time           |
|-------------------------------------|
| Agent (Analistic d'artic-art) mages |
|                                     |
|                                     |
|                                     |
| 8                                   |
| ·                                   |
|                                     |

# What do we (not) do?

### Advantages

- Assumptions
  - Flexible treatment of all inputs → No arbitrary assumption on fixity of an input
  - Returns to scale parameter Y is not restricted to one
    - If Υ =/= 1, then estimate:

$$PCM_t^{AVC} = 1 - \gamma_t (1 - PCM_t^{MC}) = \frac{P - AVC}{P}$$

If Υ = 1, then estimate:

$$PCM_t^{AVC} = PCM_t^{MC} = \frac{P-MC}{P}$$

- No need for deflator → Use nominal values (Roeger, 1995)
- Deals with endogeneity problem caused by unobservable productivity shocks (Roeger, 1995).

### Results

- Estimate aggregate PCM and the share of fixity for each input
- Decompose PCM into FCR and EPR (link to profit rate; Barkai, 2020)

## Disadvantages

- Assumptions
  - Static optimization framework  $\rightarrow$  No dynamic costs.
  - Perfect competition in the input market

### Results

- Estimate 'aggregate' coefficients
  - Not able to estimate firm-year level coefficients based on firm-year accounts
  - Firm size distribution matters (De Loecker, Eeckhout & Unger, 2020)
- However, able to estimate coefficients by subsamples based on microeconomic data
  - small vs. large, sector results and so on

### Start from a short-run production function for firm i in year t, $Q = F(K, L, M) \theta$

#### Define the primal revenue based Solow residual

 $SRQ^{R} \equiv \Delta q - \frac{WL}{PQ} \Delta l - \frac{P^{M}M}{PQ} \Delta m - (1 - \frac{WL}{PQ} - \frac{P^{M}M}{PQ}) \Delta k$ 

Use profit maximization, first-order-conditions and Euler's law to get,

$$\Delta q = \left( \frac{RK}{PQ} \Delta k + \frac{WL}{PQ} \Delta l + \frac{P^{M}M}{PQ} \Delta m \right) + \Delta \vartheta$$

In order to obtain,

$$SRQ^R =$$

#### $\Delta \theta$

#### Assumptions

- No markup
- No fixed costs (i.e. all costs are variable)
- Constant returns to scale

erivation

### Start from a short-run production function for firm i in year t, $Q = F(K, L, M) \theta$

### Define the primal revenue based Solow residual

 $SRQ^{R} \equiv \Delta q - \frac{WL}{PQ} \Delta l - \frac{P^{M}M}{PQ} \Delta m - (1 - \frac{WL}{PQ} - \frac{P^{M}M}{PQ}) \Delta k$ 

Use profit maximization, first-order-conditions and Euler's law to get,

$$\Delta q = \frac{1}{(1 - PCM)} \left( \frac{RK}{PQ} \Delta k + \frac{WL}{PQ} \Delta l + \frac{P^M M}{PQ} \Delta m \right) + \Delta \vartheta$$

In order to obtain,

$$SRQ^{R} = ($$
  $-PCM )(\Delta q - \Delta k) +$   
 $(1 - PCM)\Delta \theta$ 

#### Assumptions

- Allow markup
- No fixed costs (i.e. all costs are variable)
- Constant returns to scale

erivation

### Start from a short-run production function for firm i in year t, $Q = F(K^{\nu}, L^{\nu}, M^{\nu}) \ \theta$

### Define the primal revenue based Solow residual

 $SRQ^{R} \equiv \Delta q - \frac{WL}{PQ} \Delta l - \frac{P^{M}M}{PQ} \Delta m - (1 - \frac{WL}{PQ} - \frac{P^{M}M}{PQ}) \Delta k$ 

Use profit maximization, first-order-conditions and Euler's law to get, Derivation

$$\Delta q = \frac{1}{(1 - PCM)} \left( \frac{sv^{K}RK}{PQ} \Delta k^{\nu} + \frac{sv^{l}WL}{PQ} \Delta l^{\nu} + \frac{sv^{M}P^{M}M}{PQ} \Delta m^{\nu} \right) + \Delta \vartheta$$

In order to obtain,

$$SRQ^{R} = ( -PCM)(\Delta q - \Delta k) + \left(\frac{sv^{K}RK}{PQ}(\Delta k^{v} - \Delta k) + \frac{sv^{l}WL}{PQ}(\Delta l^{v} - \Delta l) + \frac{sv^{M}P^{M}M}{PQ}(\Delta m^{v} - \Delta m)\right) + \frac{(1-sv^{L})WL}{PQ}(\Delta k - \Delta l) + \frac{(1-sv^{L})WL}{PQ}(\Delta k - \Delta m) + (1 - PCM)\Delta\theta$$

#### Assumptions

- Allow markup
- Allow fixed and variable costs for each input
- Constant returns to scale

6

### Start from a short-run production function for firm i in year t, $Q = F(K^{\nu}, L^{\nu}, M^{\nu})^{\gamma} \Theta^{\gamma}$

#### Define the primal revenue based Solow residual

 $SRQ^{R} \equiv \Delta q - \frac{WL}{PQ} \Delta l - \frac{P^{M}M}{PQ} \Delta m - (1 - \frac{WL}{PQ} - \frac{P^{M}M}{PQ}) \Delta k$ 

Use profit maximization, first-order-conditions and Euler's law to get, Derivation

$$\Delta q = \frac{1}{\gamma(1 - PCM)} \left( \frac{sv^{K}RK}{PQ} \Delta k^{\nu} + \frac{sv^{l}WL}{PQ} \Delta l^{\nu} + \frac{sv^{M}P^{M}M}{PQ} \Delta m^{\nu} \right) + \gamma \Delta \vartheta$$

In order to obtain,

$$SRQ^{R} = (1 - \gamma(1 - PCM))(\Delta q - \Delta k) + \left(\frac{sv^{K}RK}{PQ}(\Delta k^{v} - \Delta k) + \frac{sv^{l}WL}{PQ}(\Delta l^{v} - \Delta l) + \frac{sv^{M}P^{M}M}{PQ}(\Delta m^{v} - \Delta m)\right) + \frac{(1 - sv^{L})WL}{PQ}(\Delta k - \Delta l) + \frac{(1 - sv^{L})WL}{PQ}(\Delta k - \Delta m) + \gamma^{2}(1 - PCM)\Delta\theta$$

### **Repeat for** $SRP^R$ , $SRQ^C$ and $SRP^C$

- *SRQ<sup>R</sup>* and *SRP<sup>R</sup>* are subject to scale parameter, shares of fixity and price-cost margin, though different wedges
- *SRQ<sup>C</sup>* and *SRP<sup>C</sup>* are subject to scale parameter and shares of fixity *but not to the price-cost margin,* though different wedges

#### Assumptions

- Allow markup
- Allow fixed and variable costs for each input
- Allow returns to scale different from one

- Combine Solow residuals to eliminate unobservables
- Resulting main specification

$$\Delta y_{it} = -\widehat{PCM}_t * \Delta x_{1it} + \widehat{sf_t}^k * \Delta x_{2it} + \widehat{sf_t}^l * \Delta x_{3it} + \widehat{sf_t}^m * \Delta x_{4it} + \epsilon_{it}$$

- With  $\Delta y_{it} = (SRQ_{it}^R SRP_{it}^R)PQ_{it} (SRQ_{it}^C SRP_{it}^C)C_{it}$ 
  - With  $\Delta x_{1,i} = PQ_{it} [(\Delta p + \Delta q)_{it} (\Delta k + \Delta r)_{it}]$
  - With  $\Delta x_{2it} = RK_{isct} [(\Delta p + \Delta q)_{it} (\Delta k + \Delta r)_{it}]$
  - With  $\Delta x_{3it} = WL_{isct} [(\Delta p + \Delta q)_{it} (\Delta k + \Delta r)_{it}]$
  - With  $\Delta x_{4,it} = P^M M_{it} [(\Delta p + \Delta q)_{it} (\Delta k + \Delta r)_{it}]$
- With  $PCM_t^{AVC} = 1 \gamma_t (1 PCM_t^{MC}) = \frac{P AVC}{P}$  If  $\gamma_t = 1$ , then  $PCM_t^{AVC} = PCM_t^{MC} = \frac{P MC}{P}$

Decompose

$$\widehat{PCM}_t \equiv \widehat{FCR}_t + \widehat{EPR}_t$$

• with 
$$\widehat{FCR}_t \equiv \frac{\left(\widehat{sf_t^k} * RK_t + \widehat{sf_t^l} * WL_t + \widehat{sf_t^m} * P^M M_t\right)}{PQ_t}$$
  
• with  $\widehat{EPR}_t = \widehat{PCM}_t - \frac{\left(\widehat{sf_s^k} * RK_t + \widehat{sf_t^l} * WL_t + \widehat{sf_t^m} * P^M M_t\right)}{PQ_t}$ 

### Can be estimated for any 'aggregate' group of firms

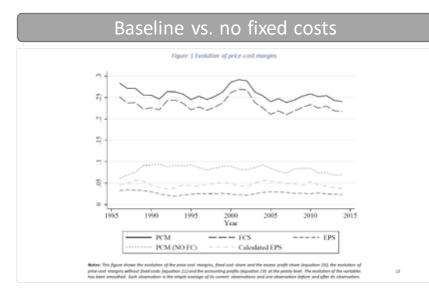
# Aggregate 'pooled' results (1985-2014, BE)

|                      | (1)      | (2)      | (3)       | (4)      | (5)      |
|----------------------|----------|----------|-----------|----------|----------|
| Price-cost Margins   | 0.080*** | 0.079*** | 0.080***  | 0.081*** | 0.254*** |
| Frice-cost wargins   | (0.010)  | (0.010)  | (0.011)   | (0.012)  | (0.017)  |
| Share of Fixed       |          |          |           |          | 0.625*** |
| Capital              |          |          |           |          | (0.041)  |
| Share of Fixed       |          |          |           |          | 0.173*** |
| Labor                |          |          |           |          | (0.029)  |
| Share of Fixed       |          |          |           |          | 0.232*** |
| Intermediates        |          |          |           |          | (0.017)  |
| Fixed Costs Share    |          |          |           | •        | 0.229*** |
|                      |          |          |           |          | (0.017)  |
| Excess Profits Share | 0.080*** | 0.079*** | 0.080**** | 0.081*** | 0.025*** |
|                      | (0.010)  | (0.010)  | (0.011)   | (0.012)  | (0.002)  |
| Year FE              | No       | Yes      | No        | Yes      | Yes      |
| Firm FE              | No       | No       | Yes       | Yes      | Yes      |
| Ν                    | 280,252  | 280,252  | 278,353   | 278,334  | 278,353  |
| r2                   | 0.27     | 0.28     | 0.31      | 0.39     | 0.54     |

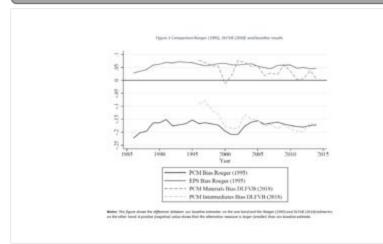
Table 2 Price-cost margins

**Notes:** Columns (1)-(4) show results from equation (21), assuming no fixed costs. Regressions are weighted by sales at the firm-year level. Column (5) show pooled results from equation (20), allowing for fixed costs. Standard errors in parentheses (+ p < 0.10, \* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001). Standard errors are clustered by NACE 2 digits.

## Aggregate yearly results (BE)

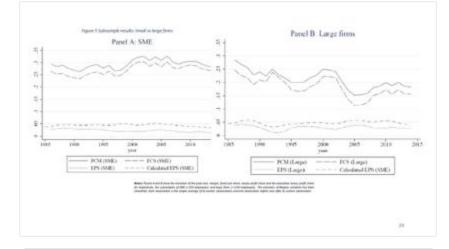


#### Baseline vs. 'simple' accounting markups

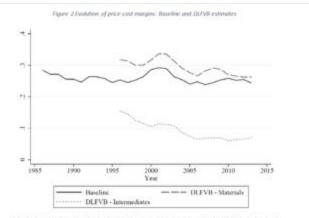


18

#### Subsample small vs. large firms



#### Baseline vs. DLFVB (2020) markups

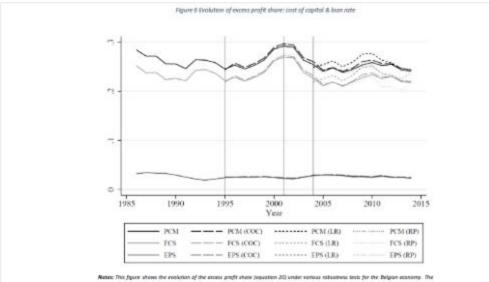


Make: The Agent share the exclusion of two handles apies and margine, but the processor tempore based entrivity destination (over based or materials as a sensible apiel out exclusion of margines), and the processor tempore based on two out of the evolution has been encodined, black observations on the sample somegar of the control instance/base, and one observation based and other \$1, observations, (for \$1, and \$1, and

- 64

## Robustness checks

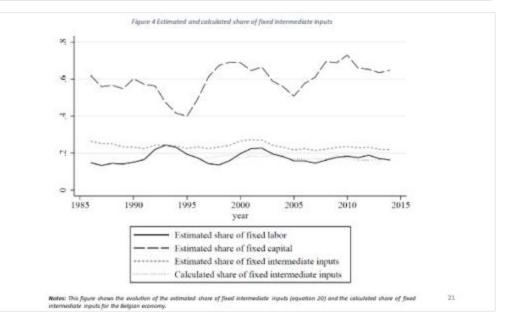
#### Cost of capital



exclution of Belgian variables has been amouthed. Each observation is the simple overage of its current observations and one observation before and other its observation.

22

#### Share of fixed intermediate inputs



## Conclusion

### • Novel methodology to estimate price-cost margins

- Allow flexible treatment of *all* input factors
  - Labor, capital and intermediate inputs
  - Each input can be variable, fixed or a combination of both

## • Illustrate based on Belgian firm-level data

- In levels → PCM (25.4%) = FCR (22.9%) + EPR (2.5%)
- In changes → ΔPCM (-5.9%) = ΔFCR (-4.0%) + ΔEPR (-1.9%)

## • PCM $\neq$ EPR due to FC

- Additional layer of insight
- Distinguish (evolution of) markups, market power, changing production processes (MC/FC/VC) and profitability

# End

### **Contact**

yannick.bormans@kuleuven.be