

Rising energy prices and productivity: short-run pain, long-term gain? Christophe André Hélia Costa Lilas Demmou Guido Franco OECD Economics Department Working Paper Discussion by Wouter Simons DG ECFIN – Unit B.2

12th CompNet Annual Conference October 19-20th, 2023

Objective and contribution

Paper investigates the impact of energy price shocks on productivity

> through the channels of within-firm productivity changes and productivity-enhancing reallocation dynamics

Contribution lies in distinguishing between the short and medium-to-long term effects

- > efficiency gains due to investment or innovation take time to materialise, hence the need for a dynamic approach
- "short-run pain, long-term gain"

Findings provide useful insights into the optimal **policy response to energy price shocks**

particularly relevant at the current juncture: need to reconcile (i) supporting firms in the case of severe shocks and (ii) ensuring incentives for fossil fuel demand reduction and decarbonisation remain

Simulations to estimate impact of the recent (2022) energy price shock on firms' profitability

> documenting heterogeneities relevant for policy support design in the current context

Describes EU countries' policy response and major green initiatives

Approach

The paper uses a **rich dataset** covering a wide range of countries over a long period of time

- firm-level productivity and financial data from ORBIS
- country-sector energy prices from IEA

Estimates a **short-term dynamic model** disentangling (i) within-firm and (ii) between-firm effects of higher energy prices

- i. model of firm productivity growth based on technology diffusion
- ii. model of relative employment growth for firms of different productivity levels

Estimates a **medium-term dynamic specification** to capture effects that take longer to materialise

- > comparing firm productivity in the years 0-4 after the energy price shock with pre-shock productivity
- exploring the investment channel

Simulate effects of the 2022 energy price increases on the corporate sector

- translate higher expenditures on energy into reduced firm profitability
- > simple accounting exercise, broadly in line with the approach taken by the Commission in a similar analysis
 - cfr. Archanskaia, Nikolov, Simons, Turrini and Vogel (QREA, July 2023)

Discussion & comments

Topical and interesting read

- ➢ rich and robust analysis, well developed methodology
- > valuable contribution by looking at longer-term dynamics
- relevant insights, useful to inform policy debate

Main comments relate to

- ➢ focus on mild shocks how to transpose findings to dramatic energy price peaks in 2022?
- > type of energy price shock exogeneous vs policy
- ➤ sample selection and sector coverage
- ➤ energy reliance measure
- ➢ firm-level simulations on the 2022 energy shock
 - methodological choices
 - > suggestions for further work

Comments

Can we extrapolate from "mild shocks" under study to current period with dramatic price peaks?

- period of study (1995-2020) likely characterised by different dynamics than 2022
- > paper focuses on mild shocks, while 2022 surely classifies as severe

Did you distinguish between different types of shocks?

> exogeneous vs "policy" shocks – e.g. carbon tax might be more anticipated leading to different adjustment dynamics

Quite selective when determining the **sample** – possible introduction of bias?

- firms with information on all variables (e.g. age of the firm) better covered firms = better performers?
- Firms that are in the sample for a period of at least six years attrition bias?

Sectoral coverage

- > narrow focus on manufacturing and construction industries services also impacted (e.g. transport)
- Firm simulations for 2022 cover all sectors, but quite aggregate e.g. heterogeneity in manufacturing (metals vs computers)

Energy reliance – incorporate indirect reliance?

- > narrow focus on direct energy reliance while indirect reliance (non-energy inputs) matters for many industries
- Firms lower capacity utilisation further? Firms adjust their sourcing strategy in addition to investment?

Comments – simulations on 2022 shock

Pass-through of the higher input prices into output prices

- > assumption of non-zero pass-through results in a modelling inconsistency
 - > only energy inputs price increases in the accounting exercise
 - > yet, non-zero pass-through throughout the supply chain leads to additional price increases in non-energy inputs too
 - > as such, non-zero pass-through is inconsistent with the exclusive focus on energy expenditure increases in the accounting exercise
- > one value for the **pass-through parameter** (0.79) across all sectors, even if estimated at the sector-level?
 - > overlooks potentially strong differences in pass-through across sectors what do you find?
 - > current situation potentially very different from estimation period not clear how this affects pass-through (data are there by now)

Encourage further work on impact of 2022 energy price peaks on European corporates

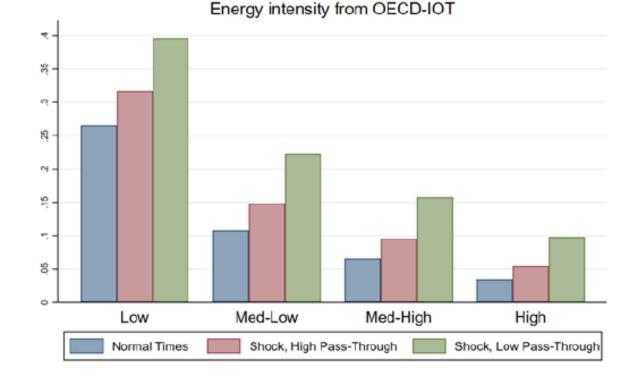
- > current description (both in terms of findings and approach) quite concise and deserves elaboration
- > go beyond profitability and explore impact on financial vulnerability
 - > equity depletion, liability accumulation, depletion of liquid assets, additional debt servicing costs, ...
- > analyse implications for productivity-enhancing reallocation process induced by energy price increases
 - > both along the intensive margin (employment growth) and extensive margin (survival/exit of firms)
- > further explore policy implications of heterogeneous impact of energy crisis across different firms

Impact on profitability across productivity distribution – some remarks

Important to show counterfactual (blue bar)

reveals strong link between productivity and profitability in normal times

"Firms in **bottom quartile of the productivity distribution** suffered disproportionately more". Yes, but


- this applies mainly to the blue bar, less to the green bar
- from the chart, energy crisis induces lower profitability also among high prod quartiles

COVID-19 legacy effects are important

- > accumulation of crises amplifies existing vulnerabilities
- seem to be disregarded in the analysis

Go beyond profitability and assess **financial vulnerability**?

> equity depletion, leverage, interest coverage ratio

Share of firms making losses by productivity quartile

7

Happy to discuss further

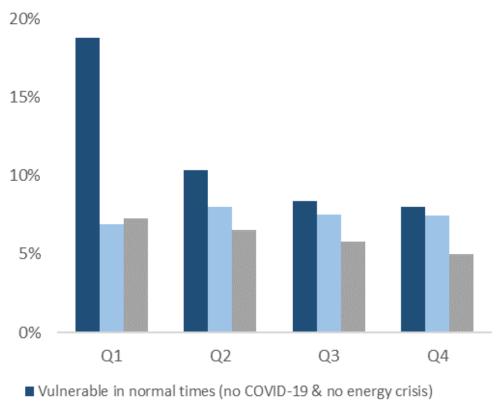
Thank you!

EC analysis – distribution of financially vulnerable firms

Graph shows distribution of firms identified as **financially vulnerable** by end 2024

Almost half of these firms (ca. 45%) would be vulnerable in normal times

these firms are relatively unproductive


Another 30% of these firms are additionally vulnerable **due to COVID-19 crisis**

> these firms are spread evenly over TFP quartiles

The remaining 25% become additionally vulnerable **due to energy crisis**

- these firms are relatively unproductive (albeit less pronounced than in normal times)
- particularly unproductive in manufacturing industries

Distribution of financially vulnerable firms across TFP quartiles – aggregate for available euro area countries

Additionally vulnerable due to COVID-19 crisis (no energy crisis)

Additionally vulnerable due to energy crisis (on top of COVID-19 crisis)

Note: euro area countries included are BE, EE, EL, ES, FI, FR, IT, LT, LV, PT, SI, SK. Quartiles computed within country-sector to control for sectoral differences. Q1 (Q4) refers to lowest (highest) quartile of TFP distribution. *Source*: European Commission elaborations on ORBIS database