Globalization and the fall of markups

Michał Gradzewicz and Jakub Mućk

Narodowy Bank Polski (NBP)

19th March 2019, Luxembourg
Joint CompNet-ENRI-IMF-EIB-IWH Conference

The views expressed herein belong to the author and have not been endorsed by Narodowy Bank Polski.
Motivation

- **Secular trend in markups**
 - Long-run rise in markups in the US (Barkai, 2016; Caballero, Farhi, and Gourinchas, 2017; De Loecker and Eeckhout, 2017; Eggertsson, Robbins, and Wold, 2018; Hall, 2018).
 - Heterogeneity outside the US, i.e., rising markups in advanced economies and stable in emerging countries (De Loecker and Eeckhout, 2018; Diez, Leigh, and Tambunlertchai, 2018; Weche Gelübcke and Wambach, 2018)
 - Super-star firms gain extraordinary markups (Diez, Leigh, and Tambunlertchai, 2018).

- **Globalization (vertical specialization)**
 - Increasing degree of vertical specialization over past two decades and development of global value chains (Baldwin, 2012).
 - Positive effects of vertical specialization for converging CEE economies (Hagemejer and Mućk, 2018).
 - Asymmetric gains and GVC participation \(\rightarrow\) smile curve.

- **Offshoring, exporting and markups**
 - Direct evidence: export premium in markups for Slovenian manufacturing in the 90ties De Loecker and Warzynski (2012) and export & import premium in markups at the centre of European GVC, i.e., France, Germany, Italy, Spain (Békés, Hornok, and Muraközy, 2016).
 - Indirect evidence: mixed evidence on role of offshoring in the decline in the labor share (Elsby, Hobijn, and Sahin, 2013; Gutiérrez, 2017; Autor, Dorn, Katz, Patterson, and Van Reenen, 2017).
Contribution

1. We document a secular fall in markups in a converging economy (Poland).
 - The documented decline in markups is robust to a choice of empirical strategy (measurement and estimation).

2. We show that falling markups in converging economy can be explained by globalization trends and GVC position.
 - increasing dependence on foreign suppliers of inputs (with the largest effect in manufacturing)
 - competition becomes fiercer on foreign markets
 - almost neutral effect of distance to final demand due to larger heterogeneity of changes across industries

3. In addition, the fall in markups can be explained by a lack of global superstar firms.

4. We document so called smile curve which describes the relationship between distance to final demand/ GVC participation and markups.
Data

- **Annual firm-level data**, covering years 2002-2016 from official statistics.
- **Financial reports and balance sheets** of all Polish enterprises employing more than 9 employees.
- **Limitations:**
 - No info on NACE rev.2 code for almost 21 thousand observations before 2005,
 - Initial sample: almost 0.77 million observations, in 10.3% cases – no information or no capital,
 - 19.9% - no information or non-positive value added measures, jointly 0.58 million of usable observations (75.1% of initial sample)
 - Additionally, about 1.6 thousands observations (0.3%) from small sectors were dropped
- **Final sample:** over 0.576 million observations on 82 thousand firms, observed for 6.4 years on average. Data coverage: around 75%

Most important variables: Value added (according to the national account definition), Employment (full-time equivalent), Capital (measured as the beginning of period book value of fixed assets: buildings, machinery and vehicles).

- Value added, output, intermediate consumption and capital prices are taken from the Eurostat databases.
Methodology

- Methodology proposed by De Loecker and Warzynski (2012)

- Estimation of production function
 - translog production function,
Baseline results

Figure: Median, unweighted and weighted mean markups

- Falling tendency of median and means, both unweighted and weighted (by sales)
- 70% of firms experienced a fall of markups in 2002-2016
- Production function estimates:
 #1
 #2
Robustness check

Figure: Evolution of median markups for different markup estimations

- **Robustness**
 - **WIOD** – we estimate PF parameters separately for WIOD sectors
 - **2d** – we estimate PF parameters separately for NACE-2digit sectors
 - **3d** – we estimate PF parameters separately for NACE-3digit sectors
 - **materials** – we use materials instead of intermediate consumption as a proxy variable in PF estimation
 - **Cobb-Douglas** – we estimate CD production function instead of translog
 - **constant nace** – almost 15% of firms change their NACE code. In such cases, we keep NACE constant at the most recent value
 - **output** – we estimate PF for global output

- **Rising dispersion in markups:** #1 #2 #3
Limited role of reallocation, entrants and exiters

Figure: Within-between industry changes, (Olley and Pakes, 1996), cumulated since 2002

Figure: Markups changes, (Melitz and Polanec, 2015), cumulated since 2002
Falling export premium and limited role of super star firms

Figure: Markup changes by export share

Figure: Evolution of markups in efficiency classes (based on deciles of average firm logTFP distribution)

Robustness check: Median, Mean, Weighted mean
Panel data analysis

Two empirical complementary strategies:

1. Dynamic panel data models at the industry level;
2. Between regression at the firm level.

Explanatory variables:

- **Globalization measures (available at the industry level)** based on the WIOD database (Timmer, Dietzenbacher, Los, Stehrer, and de Vries, 2015):
 - The Upstreamness (UPS) measures the average distance to final consumer (Antras, Chor, Fally, and Hillberry, 2012);
 - The Foreign Value Added at Exports (FVAX) the share of foreign (imported) content in the gross exports (Wang, Wei, and Zhu, 2013).

- **Market structure and demography of firms**
 - Inverted HHI indices (a number of symmetric firms) at the industry level calculated for:
 (i) total sales (\bar{HHI}_{total}^{-1}), (ii) domestic sales ($\bar{HHI}_{domestic}^{-1}$), and exports (iii) \bar{HHI}_{export}^{-1}.
 - Dummies/ ratios for entrants and exiters.

- **Productivity & selected firms features**
 - tfp - total factor productivity;
 - l - employment;
 - outsourcing_share - the share of outsourcing in gross output.
 - energy - the share of energy costs in gross output.
Table: Estimates of dynamic panel data models describing markups at the industry level

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log \mu_{it-1}$</td>
<td>0.871***</td>
<td>0.780***</td>
<td>0.697***</td>
<td>0.686***</td>
<td>0.691***</td>
<td>0.678***</td>
<td>0.737***</td>
</tr>
<tr>
<td>UPS</td>
<td>-0.391^{***}</td>
<td>-0.711^{***}</td>
<td>-1.128^{***}</td>
<td>-1.074^{***}</td>
<td>-1.072^{***}</td>
<td>-1.219^{***}</td>
<td>-0.917^{***}</td>
</tr>
<tr>
<td>UPS^2</td>
<td>0.095***</td>
<td>0.145***</td>
<td>0.276***</td>
<td>0.260***</td>
<td>0.259***</td>
<td>0.294***</td>
<td>0.222***</td>
</tr>
<tr>
<td>FVAX</td>
<td>3.777***</td>
<td>3.147***</td>
<td>3.217***</td>
<td>3.032***</td>
<td>3.231***</td>
<td>3.013***</td>
<td></td>
</tr>
<tr>
<td>tfp</td>
<td>0.697***</td>
<td>0.682***</td>
<td>0.659***</td>
<td>0.709***</td>
<td>0.627***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHI_{total}^{-1}</td>
<td>-0.000</td>
<td>-0.000</td>
<td>$-0.000*$$0.210^{**}$</td>
<td>0.323^{***}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{HHI}_{domestic}^{-1}$</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>0.144^{***}</td>
<td>0.302^{***}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHI_{export}^{-1}</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>0.144^{***}</td>
<td>0.302^{***}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entry</td>
<td>0.461***</td>
<td>0.588***</td>
<td>-2.182^{***}</td>
<td>-2.130^{***}</td>
<td>-2.025^{***}</td>
<td>-2.156^{***}</td>
<td>-2.083^{***}</td>
</tr>
<tr>
<td>exit</td>
<td>0.461***</td>
<td>0.588***</td>
<td>-2.182^{***}</td>
<td>-2.130^{***}</td>
<td>-2.025^{***}</td>
<td>-2.156^{***}</td>
<td>-2.083^{***}</td>
</tr>
<tr>
<td>Constant</td>
<td>0.461***</td>
<td>0.588***</td>
<td>-2.182^{***}</td>
<td>-2.130^{***}</td>
<td>-2.025^{***}</td>
<td>-2.156^{***}</td>
<td>-2.083^{***}</td>
</tr>
<tr>
<td>Observations</td>
<td>552</td>
<td>552</td>
<td>552</td>
<td>552</td>
<td>551</td>
<td>552</td>
<td>551</td>
</tr>
<tr>
<td>Number of sectors</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>Sargan</td>
<td>[0.929]</td>
<td>[0.875]</td>
<td>[0.950]</td>
<td>[0.974]</td>
<td>[0.970]</td>
<td>[0.973]</td>
<td>[0.982]</td>
</tr>
<tr>
<td>AR(2)</td>
<td>[0.537]</td>
<td>[0.606]</td>
<td>[0.868]</td>
<td>[0.897]</td>
<td>[0.861]</td>
<td>[0.970]</td>
<td>[0.982]</td>
</tr>
</tbody>
</table>

Note: The superscripts***, **, and * denote the rejection of null about parameters’ insignificance at 1%, 5% and 10% significance level, respectively. The expressions in round and squared brackets stand for standard errors and probabilities values corresponding to respective hypothesis, respectively. AR(2) is the test for serial correlation developed by Arellano and Bond (1991) and the null hypothesis in this case is about the error term time independence (of order two). The Sargan statistics are used to test over-identifying restrictions and the null postulates validity of instruments.
Smile curve - non-linear relationship between the markups and UPS and $FVAX$

Note: red lines stand for the estimated relationship while blue points denote the markups adjusted by the fixed effects estimates as well as impact of other variables from model (7).
Changes in $FVAX$ pushed down the markups mostly in manufacturing industries while effect of upstreamness was heterogeneous

Figure: Sectoral changes of foreign value added in exports and their contribution to sectoral markup changes

Figure: Sectoral changes of upstreamness and their contribution to sectoral markup changes

Details | Robustness check – alternative measure of the GVC participation
Assessing the role of globalization at aggregate level (between regression)

Between estimates: exporting, non-exporting.

Gradzewicz & Mućk (NBP)
1. We document secular fall in markups in a converging economy (Poland).

2. Falling markups in converging economy can be explained by globalization trends:
 - increasing dependence on foreign suppliers of inputs
 - competition becomes fiercer on foreign markets
 - almost neutral effect of distance to final demand due to sector heterogeneity
 - Békés, Hornok, and Muraközy (2016) shows higher markups associated with importing intermediates in West European firms

3. Limited evidence on ‘superstar’ firms – seems to be important in developed countries, as in Diez, Leigh, and Tambunlertchai (2018); Baqae and Farhi (2017).

4. We document so called smile curve describing the non-linear relationship between markups and distance to final demand and foreign value added at exports.

5. Extensions and interesting future research avenues
 - Transmission of markups into producer prices in Poland
 - Investigating the nature of the fall of markups: the role of changes in market structure vs. changes in price elasticities of demand

Literature II

Appendix

Globalization and the fall of markups
Figure: Employment and value added coverage (in non-financial enterprise sector)
Estimation results

<table>
<thead>
<tr>
<th>variable</th>
<th>coeff</th>
<th>std err</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_l</td>
<td>0.832***</td>
<td>(0.000168)</td>
</tr>
<tr>
<td>β_k</td>
<td>-0.0348***</td>
<td>(0.000281)</td>
</tr>
<tr>
<td>β_{ll}</td>
<td>0.0168***</td>
<td>(0.000147)</td>
</tr>
<tr>
<td>β_{lk}</td>
<td>0.0356***</td>
<td>(0.000195)</td>
</tr>
<tr>
<td>β_{kk}</td>
<td>-0.00323***</td>
<td>(0.000116)</td>
</tr>
</tbody>
</table>

- Observations: 576,407
- Number of groups: 82,142

- The production function parameters were estimated for all sectors jointly.
- It allows us to construct TFP (Ω_{it}), which is comparable across sectors and time.
- Robustness checks (PF estimated on different levels of aggregation and simplified to Cobb-Douglas) show that production function assumptions are not crucial for our results.
Production function elasticities

- Distribution of firm-level production function elasticities, averaged over time
- Trimming sample to positive elasticities – 1% of observations dropped out
- In further analysis, we also drop 2% of firms in each year with extreme markups

Figure: Production function elasticities
Dispersion of markups

Figure: Interquartile range $[q_{90}/q_{10}]$

Figure: Standard deviation of log markups

Figure: Skewness of markups
Figure: Evolution of distribution of markups over time
Decompositions: technical notes

- **Shift-share analysis** decomposes increase in weighted markup over time into three components:
 - due to a change of an average markup at the industry level (within component),
 - due to a change of the sectoral composition of the economy (between component),
 - due to the joint change in average markup and structural changes (reallocation component).

\[
\Delta \mu_t = \sum_j s_{j,t-1} \Delta \mu_{j,t} + \sum_s \mu_{j,t-1} \Delta s_{s,t} + \sum_j \Delta \mu_{j,t} \Delta s_{j,t}
\]

(1)

where \(s_{j,t}\) is share in sales (weighting variable) of a sector \(j\) in period \(t\)

- **Dynamic decomposition.** In order to scrutinize the effects of entrants \((E)\) and exiters \((X)\) on markups we apply decomposition proposed by Melitz and Polanec (2015). The change in markup can be decomposed as follows:

\[
\Delta \mu_t = \Delta \bar{\mu}_{S,t} + \Delta \text{cov}_{S,t} + S_{E,t} (\mu_{E,t} - \mu_{S,t}) + S_{X,t-1} (\mu_{S1,t-1} - \mu_{X,t-1}),
\]

(2)

where
 - \(\Delta \mu_{S,t}\) – the average markup change,
 - \(\Delta \text{cov}_{S,t}\) – reallocation effect,
 - \(S_{E,t} (\mu_{E,t} - \mu_{S,t})\) – contribution of entrants,
 - \(S_{X,t-1} (\mu_{S1,t-1} - \mu_{X,t-1})\) – contribution of exiters.
Main results

Gradzewicz & Mućk (NBP)

Globalization and the fall of markups

CompNet-ENRI-IMF-EIB-IWH Conference
Dynamic decomposition – robustness check

Figure: Markups changes, cumulated 2002-2016

- **Materials + WIOD**
- **Materials**
- **WIOD**
- **Constant nace**
- **Constant nace +3d**
- **Constant nace +2d**
- **Cobb-Douglas**
- **Cobb-Douglas + WIOD**
- **Constant nace + WIOD**
- **Baseline**
- **Output + WIOD**
- **Output**

Main results

Gradzewicz & Muć (NBP)
Globalization and the fall of markups
CompNet-ENRI-IMF-EIB-IWH Conference
Dynamic decomposition – sectoral evidence

Figure: Markups changes, cumulated since 2002

Main results

Changes in the distribution of markups

The fall of markups was present at (almost) each position of distribution.

The fall was the most pronounced in enterprises with low markups.

Only in the 95% quantile markups actually increased since 2002.

It suggests that dispersion increased.

Main results

Figure: Changes of markups in quantiles, 2002 = 1
Sectoal factors behind a markup fall

- TFP increases cost efficiency and usually positively affect markups, especially in manufacturing.
- Foreign value added of exports affects negatively markups, mostly in manufacturing.
- The effect of upstremeness is dispersed.

Figure: Decomposition of sectoral markup falls
Minima of UPS and $FVAX$

Figure: Minima of UPS and $FVAX$
Table: Estimates of dynamic panel data models describing markups at the industry level – adjusted FVAX

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log \mu_{it-1})</td>
<td>0.840***</td>
<td>0.751***</td>
<td>0.782***</td>
<td>0.679***</td>
<td>0.689***</td>
<td>0.668***</td>
</tr>
<tr>
<td>(UPS)</td>
<td>−0.286</td>
<td>−0.925***</td>
<td>−0.677***</td>
<td>−0.958***</td>
<td>−0.913***</td>
<td>−0.976***</td>
</tr>
<tr>
<td>(UPS^2)</td>
<td>0.045</td>
<td>0.223***</td>
<td>0.163***</td>
<td>0.225***</td>
<td>0.211***</td>
<td>0.229***</td>
</tr>
<tr>
<td>(FVAX \times \frac{\text{export}}{\text{sales}})</td>
<td>2.505***</td>
<td>1.479**</td>
<td>1.609**</td>
<td>1.836**</td>
<td>2.218***</td>
<td>2.045***</td>
</tr>
<tr>
<td>(\left(FVAX \times \frac{\text{export}}{\text{sales}} \right)^2)</td>
<td>−11.422***</td>
<td>−11.189***</td>
<td>−12.101***</td>
<td>−13.343***</td>
<td>−14.914***</td>
<td>−14.131***</td>
</tr>
<tr>
<td>(tfp)</td>
<td>0.710***</td>
<td>0.649***</td>
<td>0.810***</td>
<td>0.768***</td>
<td>0.833***</td>
<td></td>
</tr>
<tr>
<td>(HHI_{total})</td>
<td></td>
<td></td>
<td>−0.000*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(HHI_{domestic})</td>
<td></td>
<td></td>
<td>−0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(HHI_{export})</td>
<td></td>
<td></td>
<td>−0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>entry</td>
<td></td>
<td></td>
<td></td>
<td>0.287***</td>
<td>0.319***</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td></td>
<td>0.108</td>
<td>0.119</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.451**</td>
<td>−2.193***</td>
<td>−2.133***</td>
<td>−2.513***</td>
<td>−2.420***</td>
<td>−2.655***</td>
</tr>
<tr>
<td>Observations</td>
<td>552</td>
<td>552</td>
<td>552</td>
<td>551</td>
<td>552</td>
<td>551</td>
</tr>
<tr>
<td>Number of sectors</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>Sargan</td>
<td>[0.955]</td>
<td>[0.964]</td>
<td>[0.972]</td>
<td>[0.989]</td>
<td>[0.995]</td>
<td>[0.996]</td>
</tr>
<tr>
<td>AR(2)</td>
<td>[0.480]</td>
<td>[0.695]</td>
<td>[0.664]</td>
<td>[0.829]</td>
<td>[0.848]</td>
<td>[0.946]</td>
</tr>
</tbody>
</table>

Note: the superscripts ***, ** and * denote the rejection of null about parameters’ insignificance at 1%, 5% and 10% significance level, respectively. The expressions in round and squared brackets stand for standard errors and probabilities values corresponding to respective hypothesis, respectively. AR(2) it the test for serial correlation developed by Arellano and Bond (1991) and the null hypothesis in this case is about the error term time independence (of order two). The Sargan statistics are used to test over-identifying restrictions and the null postulates validity of instruments.
Relationship between the markups and \(UPS \) and \(FVAX \times \frac{\text{export}}{\text{sales}} \)

\(UPS \)

\(FVAX \times \frac{\text{export}}{\text{sales}} \)

Note: red lines stand for the estimated relationship while blue points denote the markups adjusted by the fixed effects estimates as well as impact of other variables from model (7).

Main results
Minima of UPS and adjusted FVAX

Figure: Minima of UPS and adjusted FVAX
Between regressions – exporting firms

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tfp</td>
<td>0.393***</td>
<td>0.369***</td>
<td>0.350***</td>
<td>0.370***</td>
<td>0.408***</td>
<td>0.491***</td>
<td>0.538***</td>
</tr>
<tr>
<td>UPS</td>
<td>−0.614</td>
<td>−0.614</td>
<td>−0.386</td>
<td>−0.427</td>
<td>−0.150</td>
<td>0.0286</td>
<td>−0.226</td>
</tr>
<tr>
<td>UPS²</td>
<td>0.145</td>
<td>0.151</td>
<td>0.0971</td>
<td>0.107</td>
<td>0.0571</td>
<td>0.0124</td>
<td>0.067</td>
</tr>
<tr>
<td>FVAX</td>
<td>4.396</td>
<td>4.816*</td>
<td>5.690**</td>
<td>2.728</td>
<td>2.690</td>
<td>0.846</td>
<td></td>
</tr>
<tr>
<td>FVAX × export sales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHI_total</td>
<td>−0.0005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHI domestic</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHI export</td>
<td>−0.003***</td>
<td>−0.004***</td>
<td>−0.004***</td>
<td>−0.001***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>outsourcing</td>
<td>−0.607</td>
<td>−0.565</td>
<td>−0.894***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>outsourcing²</td>
<td>−0.218</td>
<td>−0.256</td>
<td>0.169</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>energy l</td>
<td>2.166</td>
<td>0.262</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l²</td>
<td>−0.292***</td>
<td>−0.271***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>−0.791</td>
<td>−1.142</td>
<td>−1.236</td>
<td>−1.361</td>
<td>−1.210</td>
<td>−1.002</td>
<td>−0.396</td>
</tr>
</tbody>
</table>

Entrants and exiters dummies: ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sectoral dummies: ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations: 32519 32519 32519 32519 32519 32519 32519
R²: 0.069 0.090 0.099 0.114 0.213 0.248 0.470

Note: The superscripts ***, ** and * denote the rejection of null about parameters’ insignificance at 1%, 5% and 10% significance level, respectively. The expressions in round brackets stand for clustered standard errors.
Between regressions – non-exporting firms

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>domestic</td>
<td>industry</td>
<td>services</td>
<td>manufacturing</td>
<td>domestic</td>
<td>industry</td>
<td>services</td>
<td>manufacturing</td>
</tr>
<tr>
<td>tfp</td>
<td>0.563***</td>
<td>0.540***</td>
<td>0.632***</td>
<td>0.640***</td>
<td>0.593***</td>
<td>0.668***</td>
<td>0.572***</td>
<td>0.700***</td>
</tr>
<tr>
<td>UPS</td>
<td>1.323**</td>
<td>-1.009</td>
<td>1.631**</td>
<td>-1.278**</td>
<td>-0.188</td>
<td>-0.875*</td>
<td>0.405</td>
<td>-0.118</td>
</tr>
<tr>
<td>UPS^2</td>
<td>-0.310**</td>
<td>0.243</td>
<td>-0.393**</td>
<td>0.288*</td>
<td>0.0190</td>
<td>0.189*</td>
<td>-0.112</td>
<td>0.009</td>
</tr>
<tr>
<td>outsourcing</td>
<td>0.398</td>
<td>-0.922***</td>
<td>-0.135</td>
<td>-1.078**</td>
<td>-0.344</td>
<td>-1.029***</td>
<td>-0.143</td>
<td>-1.086***</td>
</tr>
<tr>
<td>outsourcing^2</td>
<td>-0.981***</td>
<td>0.786**</td>
<td>-0.657**</td>
<td>0.759***</td>
<td>-0.216</td>
<td>0.645***</td>
<td>-0.414*</td>
<td>0.701***</td>
</tr>
<tr>
<td>l</td>
<td>-0.151**</td>
<td>-0.159*</td>
<td>-0.111</td>
<td>0.074</td>
<td>-0.176***</td>
<td>-0.133</td>
<td>-0.179***</td>
<td>0.0909</td>
</tr>
<tr>
<td>l^2</td>
<td>0.002</td>
<td>0.008</td>
<td>-0.004</td>
<td>-0.032*</td>
<td>0.005</td>
<td>0.001</td>
<td>0.005</td>
<td>-0.035*</td>
</tr>
<tr>
<td>energy</td>
<td>0.762</td>
<td>5.501*</td>
<td>0.537</td>
<td>4.779*</td>
<td>-0.259</td>
<td>-2.933**</td>
<td>0.156</td>
<td>-2.154</td>
</tr>
<tr>
<td>HHI_-1(domestic)</td>
<td>-0.000</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.000</td>
<td>0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.518***</td>
<td>-0.327</td>
<td>-2.897***</td>
<td>-0.795</td>
<td>-0.096</td>
<td>0.142</td>
<td>-1.391</td>
<td>-2.151***</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>41314</td>
<td>8111</td>
<td>33203</td>
<td>6067</td>
<td>41314</td>
<td>8111</td>
<td>33203</td>
<td>6067</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.220</td>
<td>0.261</td>
<td>0.288</td>
<td>0.341</td>
<td>0.429</td>
<td>0.456</td>
<td>0.431</td>
<td>0.446</td>
</tr>
</tbody>
</table>

Note: the superscripts ***, ** and * denote the rejection of null about parameters’ insignificance at 1%, 5% and 10% significance level, respectively. The expressions in round brackets stand for clustered standard errors.

Derivation of a markup formula

- We use the method proposed by De Loecker and Warzynski (2012). The production function of a firm is:

\[Q(\Omega_{it}, V_{it}, K_{it}) = \Omega_{it} F_t(V_{it}, K_{it}) \]

where \(\Omega_{it} \) is Hicks-neutral productivity, \(K_{it} \) is capital and \(V_{it} \) is a set of variable inputs (e.g. labor).

- The Lagrangian associated with the cost minimization problem is:

\[\mathcal{L}(V_{it}, K_{it}, \Lambda_{it}) = P^V_{it} V_{it} + r_{it} K_{it} - \Lambda_{it} (Q(\cdot) - Q_{it}) \]

with a FOC that can be rearranged as:

\[\frac{\partial Q(\cdot)}{\partial V_{it}} \frac{V_{it}}{Q_{it}} = \frac{1}{\Lambda_{it}} \frac{P^V_{it} V_{it}}{Q_{it}} \]

- \(\theta_{it}^V = \frac{\partial Q(\cdot)}{\partial V_{it}} \frac{V_{it}}{Q_{it}} \) is production function elasticity w.r.t. variable production factor \(V_{it} \)

- We define the markup \(\mu \) as a price over marginal cost \(\mu_{it} \equiv \frac{P_{it}}{\Lambda_{it}} \) and get

\[\mu_{it} = \theta_{it}^V \frac{P_{it} Q_{it}}{P^V_{it} V_{it}}. \]

- We do not need to make assumptions on demand and how firms compete
- We also assume that labor is a variable input with no adjustment costs and no price distortions

Discussion

As we do not observe \(P_{it} \), the procedure identifies a markup up to a constant.
Estimation of production function

- We use a translog production function (small letters denote variable in logs):

\[
\tilde{q}_{it} = \beta_l l_{it} + \beta_k k_{it} + \beta_{ll} l_{it}^2 + \beta_{kk} k_{it}^2 + \beta_{lk} l_{it} k_{it} + \omega_{it} + \epsilon_{it}
\]

- We follow the literature and control for the simultaneity and selection bias
 - We assume an AR(1) process of log productivity \(\omega_{it} \)
 - We use the approach, pioneered by Olley and Pakes (1996) to account for simultaneity in the above equation and follow the Levinsohn and Petrin (2003) to use an inverse demand function for intermediate consumption in the second stage estimation (assuming that this demand function is monotone and invertible).
 - Moreover, we use the correction of Ackerberg, Caves, and Frazer (2015) to account for a possible functional dependence problem to identify labor input coefficients
 - We also control for firm exit, to account for selection bias, as stressed by Olley and Pakes (1996)

- It follows that \(\theta_{it}^L = \beta_l + 2\beta_{ll} l_{it} + \beta_{lk} k_{it} \)

- As we observe sectoral prices only and \(\tilde{Q}_{it} = P_{it} Q_{it} / P_j \), so we need to correct the observed labor share \(LS_{it} = \frac{P_{it} L_{it}}{P_j \exp(\epsilon_{it})} \) and \(\mu_{it} = \frac{\theta_{it}^L}{LS_{it}} \)
Monopsony power

- Is it possible markup fall is generated by changes in monopsony power?
- Consider a Lagrangian associated with cost minimization under monopsony:
 \[\mathcal{L}(V_{it}, K_{it}, \Lambda_{it}) = P_{it}^{V}(V_{it})V_{it} + r_{it}K_{it} - \Lambda_{it}(Q(\cdot) - Q_{it}) \]
 with a f.o.c. with respect to a factor \(V \):
 \[\frac{\partial P_{it}^{V}(V_{it})}{\partial V_{it}} V_{it} + P_{it}^{V} = \Lambda_{it} \frac{\partial Q(\cdot)}{\partial V_{it}} \]
 When you define \(\frac{\partial P_{it}^{V}(V_{it})}{\partial V_{it}} \frac{V_{it}}{P_{it}^{V}} \equiv \eta_{it} \) as an elasticity of input price w.r.t. quantity demanded (the measure of monopsony power) then using the same definition of markup \(\mu_{it} = P_{it}/\Lambda_{it} \) the above equation can be rearranged as:
 \[\mu_{it} = \theta_{it}^{V} \left(\frac{P_{it}^{V}V_{it}}{P_{it}Q_{it}} \right)^{-1}(1 + \eta_{it})^{-1} \]
 - We may overestimate the markup by ignoring potential monopsony power.
 - It also means that if the change of monopsony power is to be behind the fall of markups, monopsony power (in the labor market) need to rise, which is plausible, but rather improbable, given worsening demography, rising firm number and improvement in labor market during markup decline period.
The potential interference from labor adjustments costs or monopsony power

- PF for global output, with: intermediate inputs, labor and capital (and intermediates serving as a proxy variable)
- It allows to check if markups based on labor and intermediates elasticities and revenue shares differ
- It allows to check if decline of markups is driven by rising labor adjustment costs (or monopsony power)
- Median markups (as well as mean) are generally falling also for intermediate inputs, but the fall is less pronounced

Figure: Median markups based on labor and intermediate input elasticities
Foreign value added (FVAX) at exports in Poland

Note: the blue line stands for the FVAX, the orange line denotes the average of the FVAX at the industry level while the red line represents the FVAX adjusted by structure of German exports.

Note: the black solid line stands for the 45 degree line which represents no change in FVAX between 2000 and 2014.
The Upstreamness (UPS) in Poland

UPS in Poland

The output-weighted UPS in 2000 (horizontal axis) and in 2014 (vertical axis)

Note: the blue line stands for the UPS weighted by gross output, the orange line denotes the average of the UPS at the industry level, while the red line represents the UPS weighted by gross exports.

Note: the black solid line stands for the 45 degree line which represents no change in output-weighted UPS between 2000 and 2014.
The median markups for exporters and non-exporting forms (2002=1)

(Main results)
The mean markups for exporters and non-exporting forms (2002=1)
The average (weighted mean) markups for exporters and non-exporting forms (2002=1) (Main results)