Are efficiency measures predictive of firm crisis?
Evidence from the Italian agrifood industry

Pierluigi Toma

CompNet Conference
Bratislava, 23 June 2020
Introduction

Methodology
- Productivity Analysis
- Survival Analysis

Empirical Application

Preliminary Results

Conclusion
Aim

The present study represents an advance in the firm survival research field by examining the role of efficiency and productivity in the context of surviving attitude of firms in specific industries, and testing if it could be considered as a predictive symptom.
Aim

The present study represents an advance in the firm survival research field by examining the role of efficiency and productivity in the context of surviving attitude of firms in specific industries, and testing if it could be considered as a predictive symptom.

The agri-food industry, particularly in Italy, is an example of an industry that has experienced a notable growth during the last years in terms of economic significance, number of dedicated firms and geographical scope of activities. However, commonly due to their small size, the main goal, for a large number of agri-food firms is to ensure their survival.
The present study represents an advance in the firm survival research field by examining the role of efficiency and productivity in the context of surviving attitude of firms in specific industries, and testing if it could be considered as a predictive symptom.

The agri-food industry, particularly in Italy, is an example of an industry that has experienced a notable growth during the last years in terms of economic significance, number of dedicated firms and geographical scope of activities. However, commonly due to their small size, the main goal, for a large number of agri-food firms is to ensure their survival.

Selected Related Literature

- Audretsch and Mahmood 1995
- Geroski et al. 2010;
- Strotmann 2007
- Josefy et al. 2017;
1. We employ a unique dataset with all agrifood companies failed from 2008 to 2017 in Italy with an associate group of alive companies selected by propensity score method;

2. We compute the impact of infrastructure level on the productivity of companies, an open issue in the literature, by applying an appropriate nonparametric approach without any a-priori assumption;

3. We compare different innovative measures of productivity (whose effect is often ambiguous) including a measure of managerial performance, as well as other covariates used in previous established studies, that might affect the likelihood of firm failure.
Methodology
Two-stage approaches → Nonparametric Conditional Efficiency Frontier - Panel Data

- Aim: analyzing the role of context and locatio factor in spurring productivity growth via the analysis of the impact over time of environmental factors (Infrastructure) on efficiency.

- Literature of frontier model with environmental factor:
 → Daraio and Simar (2005)
 → Simar and Wilson (2007, 2011) → problem with two stage approach

- Separability issue: unit facing different environmental conditions. Environmental variable may influence the production process in two way:
 1. May affect the attainable set: \(\Psi^z = \{ (x, y) | Z = z, x \text{ can produce } y \} \).
 2. May affect the efficiency distribution
 3. Daraio et al. (2018) propose a test for separability condition
Following Cazals et al. (2002), Daraio and Simar (2005), Bădin et al. (2012), Mastromarco and Simar (2015):

→ nonparametric efficiency frontier panel data model with environmental factors

According to Mastromarco and Simar (2015), we consider the time T as an additional conditioning variable and, for each time period t, define the attainable set $\Psi_t^z \subset \mathbb{R}_+^{p+q}$ as the support of the conditional probability:

$$H_{X,Y|Z}(x, y|z) = \text{Prob}(X \leq x, Y \geq y|Z = z, T = t)$$

Accordingly, the conditional output-oriented technical efficiency of a production plan $(x, y) \in \Psi_t^z$, at time t facing conditions z, is defined in (Daraio and Simar, 2005) as

$$\lambda_t(x, y|z) = \sup\{\lambda|(x, \lambda y) \in \Psi_t^z\} = \sup\{\lambda|S_{Y|X,Z}^t(\lambda y|x, z) > 0\}$$

where $S_{Y|X,Z}^t(y|x, z) = \text{Prob}(Y \geq y|X \leq x, Z = z, T = t)$.
Conditional efficiency scores

- \(\lambda_{i,t}(X, Y|Z, T) \) taking into account the time dependence in the value added; shift of the frontier; Infrastructure affect the production process.

- \(R_O(X_{i,t}, Y_{i,t}|Z_{i,t}) = \frac{\hat{\lambda}_{DEA}(x,y|z)}{\hat{X}_{DEA}(x,y)} \)

- Analysis of \(R_O(X_{i,t}, Y_{i,t}|Z_{i,t}) \) marginally, as a function of \(Z \):
We use, as in Bădin et al. (2012), the flexible location-scale regression model:

\[\lambda_t(X, Y|z) = \mu(z, t) + \sigma(z, t)\epsilon \]

where we assume that \(E[\epsilon|z, t] = 0 \) and \(V[\epsilon|z, t] = 1 \).

This model allows us to capture the location \(\mu(z, t) = E[\lambda_t(X, Y|Z = z)] \) and the scale effect \(\sigma^2(z, t) = V[\lambda_t(X, Y|Z = z)] \). So the idiosyncratic part of the conditional efficiency will be estimated for \(i = 1, \ldots, n \) and \(t = 1, \ldots, s \) by

\[\hat{\epsilon}_{i,t} = \frac{\hat{\lambda}_t(x_{i,t}, y_{i,t}|z_{i,t}) - \hat{\mu}(z_{i,t}, t)}{\hat{\sigma}(z_{i,t}, t)}. \]

We estimate a location scale model for \(\hat{\lambda}_t(x_{i,t}, y_{i,t}|z_{i,t}) \). So we obtain \(\hat{\mu}(z_{i,t}, t) \) by regressing \(\log\hat{\lambda}_t(x_{i,t}, y_{i,t}|z_{i,t}) \) on \((t, z) \) and \(\hat{\sigma}^2(z_{i,t}, t) \) by regressing the squared residuals of the preceding regression on \((t, z) \).
In the second phase of this study, a COX proportional Hazard Regression is conducted on the statistical units, i.e. firms included in the dataset.
In the second phase of this study, a COX proportional Hazard Regression is conducted on the statistical units, i.e. firms included in the dataset.

Some firm-specific features, such as conditional efficiency score, unconditional efficiency score, managerial efficiency score and the Altman score, are identified as covariates in the survival analysis, while the duration, measured in year, as dependent variable.
In the second phase of this study, a COX proportional Hazard Regression is conducted on the statistical units, i.e. firms included in the dataset.

Some firm-specific features, such as conditional efficiency score, unconditional efficiency score, managerial efficiency score and the Altman score, are identified as covariates in the survival analysis, while the duration, measured in year, as dependent variable.

The dependent variable is directly measured by the firm survival, computed on the basis of the firm exit date from the market, due to its inability to survive (e.g., Agarwal and Sarkar 2002; Klepper 2002).
The Cox model specifies the hazard of firm exit as:

\[h_i(t) = h_0 \exp(\beta^t x) \]

where \(h_0(t) \) is the unknown baseline hazard function, \(x \) denotes the vector of covariates expected to shift the hazard of exit proportionally in each year, and \(\beta \) is a vector of parameters to be estimated (Hosmer and Lemeshow 1999).
The Cox model specifies the hazard of firm exit as:

\[h_i(t) = h_0 \exp(\beta^t x) \]

where \(h_0(t) \) is the unknown baseline hazard function, \(x \) denotes the vector of covariates expected to shift the hazard of exit proportionally in each year, and \(\beta \) is a vector of parameters to be estimated (Hosmer and Lemeshow 1999).

This analytic method has been used by Audretsch and Mahmood (1995) to analyze new firm survival and, for example, by Boyer and Blazy (2014) in their analysis of survival of micro-startups. In addition, the findings of Cader and Leatherman (2011) provide strong support for the use of Cox hazard models for firm survival analysis.
Empirical Application
Data sources

Dataset 356 agrifood firms located in Italy, divided by Province

Period 2009 / 2018

Output Added value

Inputs Labour defined by the number of workers
Capital stock defined by the material assets

Env. Variable Indicator of infrastructure at province level

Data source: data are sourced from AIDA. The extraction was conducted selecting the activity code manufacture of agri food industry in line with Nace Rev.2, adopted by a large part of scientific literature.
Matching procedure

The sample is constituted by the total of firms dissolved during the period 2009/2018, in Italy, belonging to sector 10 of Nace Rev. 2 and non-dissolved firms, identified through the propensity score matching on the basis of the following observable characteristics:

- Revenues in 2009 (first year of the analysis);
- Province;
- Sector code;

Non-dissolved firms have been considered right-censored.
The level of competitiveness and attractiveness of a territory is determined by the adequacy of the economic and social infrastructures present in the reference areas:

- road and railway network;
- ports and airports;
- energy and environmental systems and networks;
- cultural and recreational facilities;
- educational and health facilities;
The level of competitiveness and attractiveness of a territory is determined by the adequacy of the economic and social infrastructures present in the reference areas:

- road and railway network;
- ports and airports;
- energy and environmental systems and networks;
- cultural and recreational facilities;
- educational and health facilities;

A PCA was carried out using the correlation matrix and in order to neutralize the effects of the different territorial dimension, the endowment indicator must be related to a similar indicator of potential demand (e.g. Population, surface or an actual demand indicator).
Figure: Full ratios $\hat{R}_0(x, y|z, t)$ as a marginal function of time and infrastructure for full frontier.
Preliminary Results
Figure: Geometric mean of conditional inefficiency rate
Figure: Average conditional inefficiency by duration
Figure: Average conditional inefficiency by duration, at last year of life of companies.
Figure: Average inefficiency registered in the years before the failure
Figure: Average of conditional inefficiencies over the observation period, by duration
The Cox partial likelihood is obtained by using Breslow’s estimate of the baseline hazard function. Managerial inefficiency (proxy for management quality), technical inefficiency and conditional inefficiency are greater than 1 and are a measure of inefficiency. The results corresponding to the three considered measures of efficiency are shown in Equations I, II, III, respectively. In addition, each equation involves net asset, liquid asset, investment rate and profitability: these variables come from established economic literature on survival analysis.
<table>
<thead>
<tr>
<th></th>
<th>MODEL I</th>
<th></th>
<th>MODEL II</th>
<th></th>
<th>MODEL III</th>
<th></th>
<th>MODEL IV</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coef</td>
<td>HR</td>
<td>coef</td>
<td>HR</td>
<td>coef</td>
<td>HR</td>
<td>coef</td>
<td>HR</td>
</tr>
<tr>
<td>Net asset</td>
<td>-4.53e-05</td>
<td>1.00</td>
<td>(-4.47e-05)**</td>
<td>1.00</td>
<td>(-4.44e-05)**</td>
<td>1.00</td>
<td>(-4.38e-05)**</td>
<td>1.00</td>
</tr>
<tr>
<td>DEAMANAGERIAL</td>
<td>(1.62e-01)**</td>
<td>1.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DEA</td>
<td>1.122e-01</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZDEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid asset</td>
<td>1.65e-02</td>
<td>1.01</td>
<td>2.74e-02</td>
<td>1.03</td>
<td>2.67e-02</td>
<td>1.02</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Investment rate</td>
<td>(-3.90e-02)**</td>
<td>0.96</td>
<td>(-3.89e-02)**</td>
<td>0.96</td>
<td>(-3.87e-02)**</td>
<td>0.96</td>
<td>(-3.85e-02)**</td>
<td>0.96</td>
</tr>
<tr>
<td>Profitability</td>
<td>(-1.23e-01)**</td>
<td>0.88</td>
<td>(-1.19e-01)**</td>
<td>0.88</td>
<td>(-1.18e-01)**</td>
<td>0.88</td>
<td>(-1.19e-01)**</td>
<td>0.88</td>
</tr>
<tr>
<td>Concordance</td>
<td>0.69</td>
<td></td>
<td>0.66</td>
<td></td>
<td>0.66</td>
<td></td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Likelihood ratio test</td>
<td>38.55 on 5 df, p=3e-07</td>
<td>41.94 on 5 df, p=6 e-08</td>
<td>42.28 on 5 df, p=5e-08</td>
<td>42.75 on 5 df, p=4 e-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wald test</td>
<td>65.28 on 5 df, p=1e-12</td>
<td>69.73 on 5 df, p=1e-13</td>
<td>70.17 on 5 df, p=9e-14</td>
<td>68.28 on 5 df, p=2e-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score (logrank) test</td>
<td>72.25 on 5 df, p=3e-14</td>
<td>72.36 on 5 df, p=3e-14</td>
<td>73.08 on 5 df, p=2e-14</td>
<td>72.14 on 5 df, p=4e-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global p-value</td>
<td>0.17</td>
<td></td>
<td>0.188</td>
<td></td>
<td>0.102</td>
<td></td>
<td>0.128</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>2240</td>
<td></td>
<td>2240</td>
<td></td>
<td>2240</td>
<td></td>
<td>2240</td>
<td></td>
</tr>
<tr>
<td>N of events</td>
<td>171</td>
<td></td>
<td>171</td>
<td></td>
<td>171</td>
<td></td>
<td>171</td>
<td></td>
</tr>
</tbody>
</table>

Table: In this table we show the results of the Hazard model.
Conclusion
Conclusion

- There is a strong impact of infrastructure on productivity at firm level;
- The empirical evidence shows that inefficiency scores (managerial, technical and conditional) can reliably predict the probability of default.
- The probability of failure was higher for conditionally inefficient companies, as reflected in the measures of both managerial and technical inefficiency. This emphasizes on the role of infrastructure level on productivity and, consequently, on the survival of companies.
Thank you for attention!