Fiscal Consolidation and Firm Dynamics: Theory and Evidence

Ruhollah Eskandari Gulcin Ozkan Paulo S. Monteiro
UoY & CAMF KBS & CAMF UoY & CAMF

Bratislava Virtual Conference, June 23, 2020

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 747191.
What we do

• Novel empirical evidence on the transmission of fiscal shocks to the firm’s employment, investment and balance sheet.

• We identify tax multipliers by including unanticipated narrative tax shocks in panel VAR model.

• Panel includes sectoral level data (2-digit NACE classification) for six EU countries (BE, DK, DU, FI, FR and IT).

• We provide evidence of heterogeneous responses across credit constrained and unconstrained firms.

• Provide simple theory to explain these findings.
Main findings

- Tax based fiscal consolidations lower firm level employment and investment, but raise labor productivity.

- Fiscal consolidations lead to higher firm leverage and also raise cash holdings (liquid assets).

- However, financially constrained firms deleverage.

- Fiscal consolidations lowers investment by small and financially constrained firms mostly.

- Evidence suggestive of cleansing effects of fiscal consolidations, à la Caballero and Hammour (1994).
Some related literature

There is a large literature studying the household effects of fiscal shocks, but much less looking at firm level data.

- For example, Giavazzi and McMahon (2012), and Cloyne and Surico (2016), study the household effects of fiscal shocks, and find evidence of substantial heterogeneity;

- Briganti et al. (2018), study how fiscal shocks propagate on the industrial network (upstream and downstream). Tax shocks propagate downstream (supply shocks).

In contrast, lots of work on heterogeneous effects of monetary policy shocks (recent HANK models and earlier empirical work).
Panel VARX model

Baseline model

\[
\begin{cases}
 m_{c,t} = \Gamma_{11}(L) m_{c,t-1} + \alpha S_{c,t} + \Psi_{c,t} + \epsilon_{c,t}^m \\
 X_{sc,t} = \Gamma_{21}(L) m_{c,t-1} + \Gamma_{22}(L) X_{sc,t-1} + \beta_1 S_{c,t} + \Omega_{sc,t} + \epsilon_{sc,t}^x
\end{cases}
\]

where \(S_{c,t} \) is the narrative based shocks, and with

\[
m_{c,t} = [\Delta \tau_{c,t} \quad \pi_{c,t} \quad \nu_{c,t} \quad \gamma_{c,t}]',
\]

and \(X_{sc,t} \), a vector of country and sector variables including:

- employment and labor productivity growth;
- investment ratio;
- cash ratio (liquid assets) and leverage growth;

Finally, sector, country and time effects collected in \(\Omega_{sc,t} \).
Fiscal consolidation shocks (Alesina et al., 2019)
The CompNET dataset

European dataset combining data from existing firm-level datasets available at the national level.

National firm level data is aggregated at the sectoral level, using a common methodology for the harmonization of variable definitions, industry coverage and sampling procedure across countries.

This yields an unbalanced panel at the 2-digit NACE sectoral level (55 sectors), for 6 countries and covering the period 2002-2013.
The 2-digit NACE classification ⇒ 55 sectors (example Manufacturing)

- C MANUFACTURING
 - 10 Manufacture of food products
 - 11 Manufacture of beverages
 - 12 Manufacture of tobacco products
 - 13 Manufacture of textiles
 - 14 Manufacture of wearing apparel
 - 15 Manufacture of leather and related products
 - 16 Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles of straw and plaiting materials
 - 17 Manufacture of paper and paper products
 - 18 Printing and reproduction of recorded media
 - 19 Manufacture of coke and refined petroleum products
 - 20 Manufacture of chemicals and chemical products
 - 21 Manufacture of basic pharmaceutical products and pharmaceutical preparations
 - 22 Manufacture of rubber and plastic products
 - 23 Manufacture of other non-metallic mineral products
 - 24 Manufacture of basic metals
 - 25 Manufacture of fabricated metal products, except machinery and equipment
 - 26 Manufacture of computer, electronic and optical products
 - 27 Manufacture of electrical equipment
 - 28 Manufacture of machinery and equipment n.e.c.
 - 29 Manufacture of motor vehicles, trailers and semi-trailers
 - 30 Manufacture of other transport equipment
 - 31 Manufacture of furniture
 - 32 Other manufacturing
 - 33 Repair and installation of machinery and equipment
Estimated baseline model

Table 1: Baseline model

<table>
<thead>
<tr>
<th></th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\Delta \tau_{t-1})</td>
<td>(\pi_t)</td>
<td>(u_t)</td>
<td>(g_t)</td>
<td>EMP growth_t</td>
<td>INV_t</td>
<td>ALP growth_t</td>
<td>CASH growth_t</td>
<td>LEV growth_t</td>
</tr>
<tr>
<td>SHOCK</td>
<td>0.441**</td>
<td>-0.215</td>
<td>0.618***</td>
<td>-1.075**</td>
<td>-0.205**</td>
<td>-0.756**</td>
<td>0.115</td>
<td>1.773***</td>
<td>0.840***</td>
</tr>
<tr>
<td></td>
<td>(2.36)</td>
<td>(-1.19)</td>
<td>(3.01)</td>
<td>(-2.17)</td>
<td>(-2.00)</td>
<td>(-2.29)</td>
<td>(0.38)</td>
<td>(3.33)</td>
<td>(4.29)</td>
</tr>
<tr>
<td>(\Delta \tau_{t-1})</td>
<td>-0.118</td>
<td>0.125</td>
<td>-0.365**</td>
<td>0.384</td>
<td>0.709***</td>
<td>1.123***</td>
<td>-0.090</td>
<td>0.292</td>
<td>-0.224</td>
</tr>
<tr>
<td></td>
<td>(-0.81)</td>
<td>(1.36)</td>
<td>(-2.35)</td>
<td>(1.63)</td>
<td>(5.42)</td>
<td>(4.91)</td>
<td>(-0.44)</td>
<td>(0.43)</td>
<td>(-1.57)</td>
</tr>
<tr>
<td>(\pi_{t-1})</td>
<td>-0.227</td>
<td>-0.166</td>
<td>0.456**</td>
<td>-1.462***</td>
<td>-0.722***</td>
<td>0.001</td>
<td>0.730**</td>
<td>-1.075**</td>
<td>0.832***</td>
</tr>
<tr>
<td></td>
<td>(-1.32)</td>
<td>(-1.12)</td>
<td>(2.34)</td>
<td>(-3.67)</td>
<td>(-5.17)</td>
<td>(0.00)</td>
<td>(2.41)</td>
<td>(-2.13)</td>
<td>(3.84)</td>
</tr>
<tr>
<td>(u_{t-1})</td>
<td>0.020</td>
<td>-0.090***</td>
<td>0.804***</td>
<td>-0.189**</td>
<td>-0.019</td>
<td>0.094</td>
<td>-0.058</td>
<td>0.544*</td>
<td>0.173*</td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(-2.88)</td>
<td>(16.21)</td>
<td>(-2.29)</td>
<td>(-0.34)</td>
<td>(0.63)</td>
<td>(-0.55)</td>
<td>(1.75)</td>
<td>(1.66)</td>
</tr>
<tr>
<td>(g_{t-1})</td>
<td>0.123*</td>
<td>0.168***</td>
<td>-0.338***</td>
<td>0.877***</td>
<td>0.141**</td>
<td>0.389***</td>
<td>-0.428***</td>
<td>0.316</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(1.86)</td>
<td>(3.18)</td>
<td>(-4.23)</td>
<td>(5.72)</td>
<td>(2.01)</td>
<td>(2.81)</td>
<td>(-3.21)</td>
<td>(1.08)</td>
<td>(0.63)</td>
</tr>
<tr>
<td>EMP growth_{t-1}</td>
<td>0.265***</td>
<td>0.117**</td>
<td>0.001</td>
<td>0.348***</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(12.80)</td>
<td>(2.45)</td>
<td>(0.02)</td>
<td>(2.18)</td>
<td>(0.19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INV_{t-1}</td>
<td>0.025***</td>
<td>0.609***</td>
<td>-0.045**</td>
<td>-0.028</td>
<td>0.079***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.16)</td>
<td>(8.43)</td>
<td>(-2.51)</td>
<td>(-0.83)</td>
<td>(4.43)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALP growth_{t-1}</td>
<td>0.021***</td>
<td>0.053**</td>
<td>-0.016</td>
<td>-0.086</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.58)</td>
<td>(2.12)</td>
<td>(-0.57)</td>
<td>(-1.38)</td>
<td>(0.30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASH growth_{t-1}</td>
<td>-0.011*</td>
<td>0.004</td>
<td>0.014</td>
<td>-0.194***</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.86)</td>
<td>(0.32)</td>
<td>(1.33)</td>
<td>(-4.33)</td>
<td>(0.44)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEV growth_{t-1}</td>
<td>-0.044***</td>
<td>0.077**</td>
<td>0.042*</td>
<td>-0.177***</td>
<td>0.136***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-4.48)</td>
<td>(2.33)</td>
<td>(1.66)</td>
<td>(-2.41)</td>
<td>(3.54)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations | 144 | 144 | 144 | 144 | 2989 | 2989 | 2989 | 2989 | 2989 |

\(t\) statistics in parentheses, based on robust standard errors.

* \(p < 0.10\), ** \(p < 0.05\), *** \(p < 0.01\)
Fiscal Consolidation and the Aggregate Economy

note: 90% coverage confidence intervals obtained using the wild bootstrap method.
Fiscal Consolidation and Firm Level Adjustment

Note: 90% coverage confidence intervals obtained using the wild bootstrap method.
Panel VARX model
Heterogeneous effects of fiscal consolidation

\[X_{isc,t} = \Gamma_2(L) \begin{bmatrix} m_{c,t-1} \\ X_{sc,t-1} \end{bmatrix} + \beta_1 S_{c,t} + \beta_2 (S_{c,t} D_i) + \delta D_i + \Omega_{sc,t} + \epsilon_{isc,t}, \]

where \(D_i \) is an indicator variable, which selects particular types of firms.

We consider heterogeneous effects along the following dimensions:

- large and small firms;
- financially constrained and unconstrained firms.
Small, medium and large firms (based on employment)

<table>
<thead>
<tr>
<th></th>
<th>(1) small firms</th>
<th>(2) medium firms</th>
<th>(3) large firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP</td>
<td>29.17 (1.511)</td>
<td>83.98 (8.267)</td>
<td>458.63 (69.230)</td>
</tr>
<tr>
<td>INV</td>
<td>0.24 (0.128)</td>
<td>0.26 (0.136)</td>
<td>0.29 (0.142)</td>
</tr>
<tr>
<td>CASH</td>
<td>0.07 (0.052)</td>
<td>0.05 (0.028)</td>
<td>0.03 (0.018)</td>
</tr>
<tr>
<td>DIVIDENDS</td>
<td>0.01 (0.012)</td>
<td>0.01 (0.010)</td>
<td>0.01 (0.011)</td>
</tr>
<tr>
<td>LEVERAGE</td>
<td>0.29 (0.213)</td>
<td>0.27 (0.223)</td>
<td>0.23 (0.231)</td>
</tr>
<tr>
<td>COLLATERAL</td>
<td>0.23 (0.176)</td>
<td>0.20 (0.163)</td>
<td>0.17 (0.118)</td>
</tr>
<tr>
<td>N</td>
<td>638</td>
<td>634</td>
<td>583</td>
</tr>
</tbody>
</table>

Mean coefficients; sd in parentheses
* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$
Financially constrained and unconstrained firms (based on survey response)

<table>
<thead>
<tr>
<th></th>
<th>(1) constrained</th>
<th>(2) unconstrained</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP</td>
<td>38.20 (33.260)</td>
<td>49.67 (37.950)</td>
</tr>
<tr>
<td>INV</td>
<td>0.23 (0.182)</td>
<td>0.25 (0.145)</td>
</tr>
<tr>
<td>CASH</td>
<td>0.01 (0.009)</td>
<td>0.06 (0.049)</td>
</tr>
<tr>
<td>DIVIDENDS</td>
<td>0.00 (0.002)</td>
<td>0.02 (0.018)</td>
</tr>
<tr>
<td>LEVERAGE</td>
<td>0.60 (0.217)</td>
<td>0.24 (0.207)</td>
</tr>
<tr>
<td>COLLATERAL</td>
<td>0.23 (0.169)</td>
<td>0.23 (0.155)</td>
</tr>
<tr>
<td>N</td>
<td>2074</td>
<td>3728</td>
</tr>
</tbody>
</table>

Mean coefficients; sd in parentheses
* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$
Fiscal Consolidation and Firm Level Adjustment (Small and Large Firms)
Fiscal Consolidation and Firm Level Adjustment (Financially Constrained Firms)
We propose simple model with the following ingredients:

- Heterogeneous firms (with endogenous exit dynamics);
- Debt financed working capital requirements.
- Borrowing constraints à la Kiyotaki and Moore (1997);

Fiscal consolidation leads to:

- Lower labor demand and employment;
- Higher labor productivity (reallocation across firms);
- Higher leverage for unconstrained firms;
- Cleansing effects (endogenous exit of least productive firms);
Firm’s problem

Heterogeneous plants face the problem

\[\nu (x^i_t; a^i, k^i) = \max_{n, \ell} \left[\lambda \left(\frac{x^i_{t+1}}{p} \right) + (1 - \lambda) \nu (x^i_{t+1}; a^i, k^i) \right], \]

subject to budget, working capital and borrowing constraints:

\[x^i_{t+1} = \max \left\{ x^i_t; x^i_t + (1 - \tau) \pi^i_t \right\}, \]

\[\ell + x^i_t \geq n, \]

\[\ell \leq \phi k^i, \]

with \(\mu > 0 \), the cost of external liquidity, \(\phi, \lambda \in (0, 1) \), and

\[\pi^i_t = p \left(a^i k^i \right)^{1-\alpha} n^\alpha - \varrho - n - \mu \ell. \]
Firm’s employment

\[n^i_t = \begin{cases}
\eta a^i k^i, & \text{if unconstrained \& unleveraged;} \\
\chi \eta a^i k^i, & \text{if unconstrained but leveraged, with } \chi \in (0, 1); \\
x^i_t + \phi k^i, & \text{if firm is credit constrained;} \\
0, & \text{if plant exits;}
\end{cases} \]