AGGREGATE DYNAMICS AND MICROECONOMIC HETEROGENEITY: THE ROLE OF VINTAGE TECHNOLOGY

Giuseppe Fiori
Board of Governors

Filippo Scoccianti
Bank of Italy

December 3, 2019

FINPRO Workshop
The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System (or of any other person associated with the Federal Reserve System) or Bank of Italy.
Background/Motivation

- After the Great Recession slow recovery of Southern European countries
 - Prolonged slump in aggregate investment
 - Stagnant aggregate productivity

- Lack of investment often blamed for the poor performance of productivity
 - Logic: technology adoption through investment

- Empirical evidence on vintage technology is scant
We study the role of investment for productivity dynamics

- Microeconomic evidence on heterogeneity and vintage effects
 - Census of incorporated Italian firms
- Macroeconomic implications: structural model
 - Firm heterogeneity à la Khan and Thomas (ECMA, 2008)
 - Technology adoption decision
Investment is a key determinant of productivity dynamics

- Firms with lower investment age have higher productivity
 investment age is the time elapsed since the last large investment episode

- Investment age/vintage effects account for \(\sim 15\% \) of productivity heterogeneity across firms

Macroeconomic relevance of the link investment-productivity

- Vintage technology amplifies dynamics following aggregate shocks

- Investment slowdown accounts for over \(\frac{1}{3} \) of missing productivity growth in the Italian economy
Empirical Analysis

Microeconomic Data

- Census of incorporated Italian firms
 - Balance-sheet data from 1986 to 2015
 - 395,169 different firms and 5,004,894 firm-observations
 - Representative of ~80% of total value-added
Empirical Analysis
Firm-Level Investment Is Lumpy

- Investment is a large and infrequent, or *lumpy*, episode
- Lumpiness in capital accumulation, where 18% of firms
 - Exhibits an investment rate over 20% (spikes)
 - Accounts for 61% of total investment
- Empirics: Spikes as a signal of technology adoption
VINTAGE EFFECTS IN THE DATA

EMPIRICAL SPECIFICATION

\[
\log(\text{Productivity}_{f,t}) = \alpha + \sum_{j=1}^{12+} \beta_j \text{Inv.Age}_{j,f,t} + \text{Controls}_{f,t} + \epsilon_{f,t}
\]

- **Productivity**: labor and total factor productivity
- **Inv.Age_{j,f,t}**: time elapsed since the last investment spike \((ik_{f,t} \geq 0.20)\)
- **Controls**: firm-, industry-, year-effects, firm’s age and size dummies
VINTAGE EFFECTS IN THE DATA

ESTIMATED β_j’S

A. Labor Productivity

B. Total Factor Productivity
Results not driven by

- Idiosyncratic shocks
 Estimate AR productivity process: ~ 0.4

- News shocks
 Include expected 2-year ahead growth rate of revenues: β_j’s unchanged

- Innovative firms
 Sample split between firms with high- and low-intensity in intangible capital: β_j’s not different

Extensive robustness analysis

- Spikes definition, sample composition, sectoral analysis
QUANTIFYING AGGREGATE EFFECTS

◇ What is the **Macro** relevance of this **Micro** evidence?

◇ **Reduced-form approach**

 ✓ Industry level, share of lumpy investors predicts future productivity

 ✗ Partial equilibrium analysis

◇ **Structural approach (today)**

 ◦ Aggregate effects from changes in the distribution of firms over investment age

 ◦ Lumpy capital accumulation

 ✓ General equilibrium analysis and transitional dynamics
THEORETICAL FRAMEWORK - AGENTS

◊ Firms
 – Khan and Thomas (ECMA, 2008)
 – Lumpy capital accumulation
 – Technology adoption decision

◊ Representative household
 – Consume
 – Save
Theoretical Framework - Firms

- **A firm is a triplet** (z, ε, k)
 - z - permanent productivity vintage
 - ε - exogenous temporary idiosyncratic shock
 - k - stock of capital

- **Firms produce output**
 - Cobb-Douglas production function $y = \varepsilon z k^\theta$
 - Perfectly competitive
 - One-sector economy
TECHNOLOGY ADOPTION DECISION

- Technological frontier \(z_0 \) expands over time
 \(z_0 \) evolves at a gross rate \(\gamma_A \)

- Firms face a non-convex adoption cost \(\xi \)
 \(\xi \) is bounded, stochastic, and i.i.d.

- If firms pay the adoption cost (next period):
 - Upgrade to the latest vintage \(z'_0 \)
 - Choose \(k' \) optimally \(k^* \in \mathbb{R}_+ \)

- If firms do not pay the adoption cost (next period):
 - Keep current vintage \(z \)
 - Distance from the technological frontier increases at a gross rate \(\gamma_A \)
 - Choose constrained \(k' \in \Omega(k) \equiv \left[\frac{1-\delta+a}{\gamma}k, \frac{1-\delta+b}{\gamma}k \right] \)
Model Implications

- Non-convex adoption costs lead to:
 - (S,s) technology adjustment rules - action/inaction region
 - Different vintages z coexist (distribution is non-degenerate)
 - Aggregate TFP is endogenous to firms’ adoption decision

- Model parameterized reproduces
 - The cross-sectional distribution of investment rates (target)
 - The cross-sectional distribution of investment age (validation)
Cross-Section of Investment Rates

Model versus Data

<table>
<thead>
<tr>
<th></th>
<th>Inaction</th>
<th>Positive Spikes</th>
<th>Negative Spikes</th>
<th>Positive Investment</th>
<th>Negative Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>34.19%</td>
<td>18.81%</td>
<td>3.11%</td>
<td>59.81%</td>
<td>6.00%</td>
</tr>
<tr>
<td>Model</td>
<td>36.25%</td>
<td>18.32%</td>
<td>0.15%</td>
<td>60.58%</td>
<td>3.17%</td>
</tr>
</tbody>
</table>

Notes: Inaction: $ik \in (-0.05, 0.05)$; Positive spike: $ik \geq 0.20$; Negative spike: $ik \leq 0.20$; Positive investment: $ik \geq 0.05$; Negative investment: $ik \leq 0.05$.
APPLICATION
FINANCIAL CRISIS IN ITALY

◊ Financial shock (today)
 – Increase in the cost of investing (akin to Italian 2012 recession)
 – Perfect foresight, no aggregate uncertainty

◊ Business cycle/technology shocks
 – Stochastic technological frontier z_0
 – Aggregate uncertainty, Krusell-Smith solution method
Properties of the Stochastic Process

Financial Shock

- **Financial cost**: $(1 + \lambda_t) i_f, t$

 λ_t are AR(1) processes

- **Process is temporary but persistent**

 - Time-0 the economy is in steady state

 - Time-1 the (temporary) shock hits the economy

 - Size of the shock λ_t: $Inv.Age_0$ drops as in 2012
Aggregate Dynamics

Financial Shock

<table>
<thead>
<tr>
<th></th>
<th>GDP RBC</th>
<th>GDP VINTAGE</th>
<th>Investment RBC</th>
<th>Investment VINTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>0.00%</td>
<td>0.00%</td>
<td>-4.87%</td>
<td>-4.48%</td>
</tr>
<tr>
<td>Period 1</td>
<td>-0.19%</td>
<td>-0.60%</td>
<td>-3.60%</td>
<td>-3.39%</td>
</tr>
<tr>
<td>Period 2</td>
<td>-0.31%</td>
<td>-0.85%</td>
<td>-2.66%</td>
<td>-2.83%</td>
</tr>
<tr>
<td>Period 3</td>
<td>-0.42%</td>
<td>-0.77%</td>
<td>-1.95%</td>
<td>-2.31%</td>
</tr>
<tr>
<td>Period 4</td>
<td>-0.38%</td>
<td>-0.68%</td>
<td>-1.43%</td>
<td>-1.57%</td>
</tr>
</tbody>
</table>

Notes: Each entry is in percent relative from trend values.
Aggregate TFP Response

Financial Shock

<table>
<thead>
<tr>
<th></th>
<th>TFP Data</th>
<th>TFP Vintage</th>
<th>TFP RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>-1.27%</td>
<td>-0.42%</td>
<td>0.00%</td>
</tr>
<tr>
<td>2013</td>
<td>-1.08%</td>
<td>-0.57%</td>
<td>0.00%</td>
</tr>
<tr>
<td>2014</td>
<td>-1.15%</td>
<td>-0.31%</td>
<td>0.00%</td>
</tr>
<tr>
<td>2015</td>
<td>-0.89%</td>
<td>-0.26%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Notes: Each entry is in percent relative from trend values. TFP is computed using a Cobb-Douglas aggregate production function.
CONCLUSION

✓ Investment is a key determinant of productivity dynamics

✓ Vintage technology amplifies the propagation of aggregate shocks

✓ Investment heterogeneity is quantitatively relevant for aggregate dynamics
INVESTMENT AND PRODUCTIVITY

RELATION TO THE LITERATURE

◊ Empirical evidence is mixed:

◊ Theoretical work on vintages and investment:

– Vintage models: Johansen (ECMA, 1959), Solow (1960), Boucekkine, De la Croix, Licandro (2011)

– Firm-level investment: Cooper and Haltiwanger (AER, 1993), Cooper, Haltiwanger and Power (AER, 1999), Cooley, Greenwood, Yorukoglu (JME, 1997), Khan and Thomas (ECMA 2008), Bachmann, Caballero and Engel (AEJ-Macro, 2013), Fiori and Traum (2018)
Firm’s Capital Accumulation

Compute investment rate (i_k) as Bloom (2009):

- $i_{kf,t} = \frac{I_{f,t}}{0.5(K_{f,t-1} + K_{f,t})}$

- $I_{f,t}$ investment net of disinvestment

- $I_{f,t}$ includes tangible and intangible investment

- $K_{f,t}$ capital computed using Perpetual Inventory Method
Distribution of Investment Rates

Lumpiness in Capital Accumulation

<table>
<thead>
<tr>
<th>Investment Rate</th>
<th>Share in Data Set</th>
<th>Share of Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i_k \geq 0.20$</td>
<td>18.81%</td>
<td>61.04%</td>
</tr>
<tr>
<td>$-0.05 \leq i_k \leq 0.05$</td>
<td>34.19%</td>
<td>2.37%</td>
</tr>
<tr>
<td>$i_k \leq -0.20$</td>
<td>3.11%</td>
<td>-1.74%</td>
</tr>
</tbody>
</table>

Notes: Sample period 1998-2015. Entries are sample averages.
PRODUCTIVITY MEASURES

- **Labor productivity** \((l_{pf,t})\):

 \[
 \log(l_{pf,t}) = \log(v_{f,t}) - \log(n_{f,t})
 \]

 - \(v_{f,t}\) real value-added and \(n_{f,t}\) labor input

- **Unadjusted total factor productivity** \((tfp_{f,t})\):

 \[
 \log(tfp_{f,t}) = \log(v_{f,t}) - \theta\log(k_{f,t}) - \nu\log(n_{f,t})
 \]

 - \(k_{f,t}\) real capital stock

 - Input elasticities estimated as in Bachmann and Bayer (AER, 2014)
Sample Statistics

Statistics on Firm’s Age

<table>
<thead>
<tr>
<th>Firm Age</th>
<th>Share in Data Set (A)</th>
<th>Share of Output (B)</th>
<th>Share of Investment (C)</th>
<th>Share of Employment (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 5 years old</td>
<td>29.90</td>
<td>13.90</td>
<td>16.69</td>
<td>15.74</td>
</tr>
<tr>
<td>5 – 10 years old</td>
<td>23.05</td>
<td>17.20</td>
<td>17.81</td>
<td>16.60</td>
</tr>
<tr>
<td>10 – 20 years old</td>
<td>24.97</td>
<td>25.80</td>
<td>24.87</td>
<td>25.04</td>
</tr>
<tr>
<td>20+ years old</td>
<td>22.08</td>
<td>43.10</td>
<td>40.63</td>
<td>42.62</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Notes: Sample period 1998-2015. Entries are sample averages.
Distribution of Investment Rates

Lumpiness in Capital Accumulation

<table>
<thead>
<tr>
<th>Investment Rate</th>
<th>Share in Data Set</th>
<th>Share of Output</th>
<th>Share of Investment</th>
<th>Share of Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ik \geq 0.20$</td>
<td>18.81%</td>
<td>26.77%</td>
<td>61.04%</td>
<td>27.52%</td>
</tr>
<tr>
<td>$-0.05 \leq ik \leq 0.05$</td>
<td>34.19%</td>
<td>25.67%</td>
<td>2.37%</td>
<td>27.01%</td>
</tr>
<tr>
<td>$ik \leq -0.20$</td>
<td>3.11%</td>
<td>1.98%</td>
<td>-1.74%</td>
<td>2.14%</td>
</tr>
</tbody>
</table>

Notes: Sample period 1998-2015. Entries are sample averages. ik denotes the investment rate.
Investment Age Distribution

Years − Investment Age

Fraction of Firms

Data
Estimated β_j’s - Sectoral Evidence

Manufacturing

- Gap - percent
 - Years Inv. age

Accommod. and Food

- Gap - percent
 - Years Inv. age
Marginal Estimated Effects

- One standard deviation shock to the share of lumpy investors
 - Between 0.8 and 1.1 percent to LP
 - Between 0.7 and 1.1 percent to TFP
 - **Caveat:** General equilibrium effects are ignored
Financial Shock

Properties of the Stochastic Process

- Financial cost: \((1+\lambda_t) i_{f,t}\)

 \(\lambda_t\) follows as AR(1) process

- Process is temporary but persistent

 - \(\lambda_t = \rho \lambda_{t-1} + \varepsilon_{\lambda_t}\)

 - In steady state \(\lambda_t=0\)
Theoretical Framework

Summary

Firm’s Adoption and Investment Decision

<table>
<thead>
<tr>
<th>Fixed Cost Paid</th>
<th>Future Technology</th>
<th>Future Capital</th>
<th>Total Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i \neq 0)</td>
<td>(\xi + \delta_{S}k)</td>
<td>(z')</td>
<td>(k' > 0 \in \mathbb{R}_+)</td>
</tr>
<tr>
<td>(i = i^C)</td>
<td>0</td>
<td>(z/\gamma_{A})</td>
<td>(k' > 0 \in \Omega(k))</td>
</tr>
</tbody>
</table>
Model Validation I

Investment Age Distribution

Comparison between the empirical and the model-based Investment Age distribution.
MODEL VALIDATION II
ESTIMATED EFFECTS WITH SIMULATED DATA

Investment Age and Productivity

Data
Model

Regressions with actual versus simulated data.
Technology Shocks

- Stochastic technological frontier

 - $\gamma_{A,t}$ follows an AR1 process

 - Trend shocks

 - Model boils down to the RBC when $\xi = 0$
Technology Shocks

Business Cycle Moments

<table>
<thead>
<tr>
<th></th>
<th>ΔGDP</th>
<th>ΔC</th>
<th>ΔI</th>
<th>LABOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_X</td>
<td>0.28%</td>
<td>0.27%</td>
<td>3.57%</td>
<td>0.38%</td>
</tr>
<tr>
<td>VINTAGE Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_X</td>
<td>0.42%</td>
<td>0.22%</td>
<td>4.37%</td>
<td>0.41%</td>
</tr>
</tbody>
</table>

Notes: Each entry represents the volatility of the respective variable. Δ we indicate the growth rate. C, I and L refer to consumption, investment, and labor, respectively.
FROM INVESTMENT TO PRODUCTIVITY

<table>
<thead>
<tr>
<th>Years</th>
<th>Investment</th>
<th>Labor productivity</th>
<th>TFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995-2007</td>
<td>3.2%</td>
<td>0.3%</td>
<td>0.2%</td>
</tr>
<tr>
<td>2007-2013</td>
<td>-4.6%</td>
<td>-0.9%</td>
<td>-0.9%</td>
</tr>
<tr>
<td>2013-2017</td>
<td>1.7%</td>
<td>0.9%</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

Note: all figures are averages of yearly growth rates.

A prolonged fall in investment negatively affects productivity:

1. temporarily (cyclical component of TFP)
2. maybe also structurally (trend TFP)