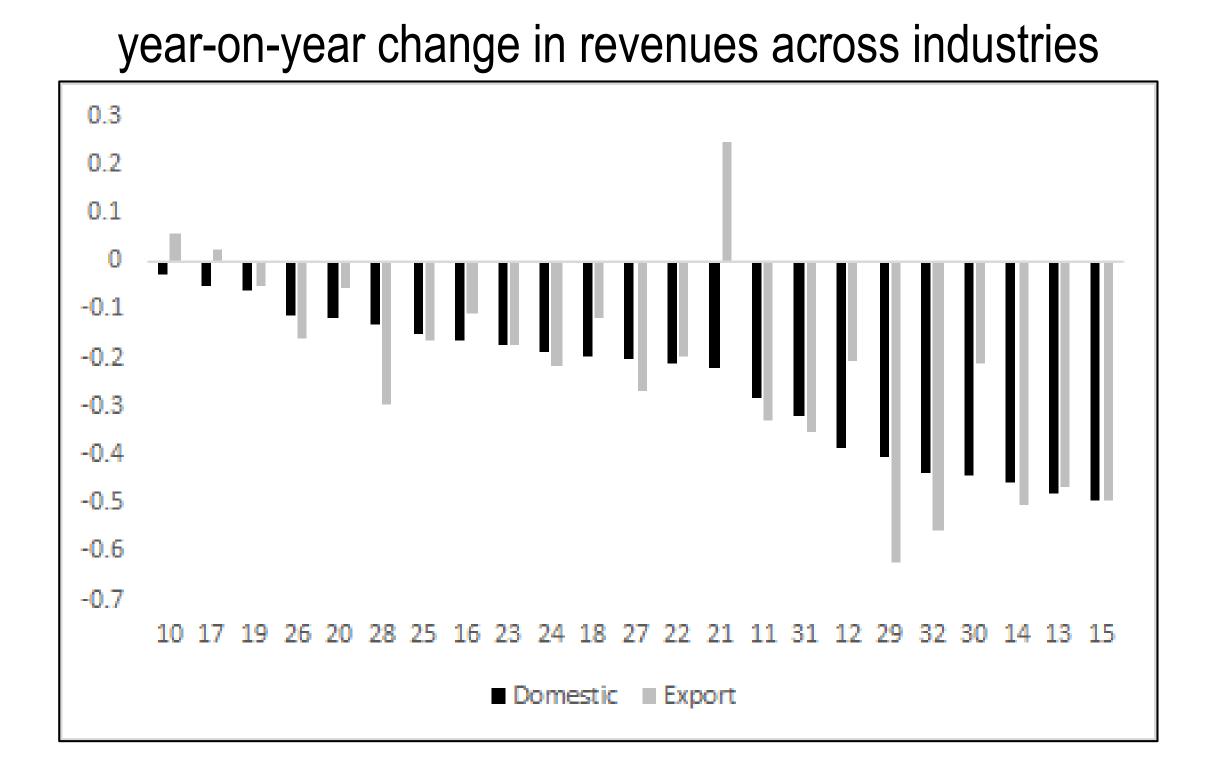
How do banks propagate economic shocks?

Yusuf Emre AkgündüzSeyit Mümin CilasunSabanci UniversityCentral Bank of the Republic of Turkey

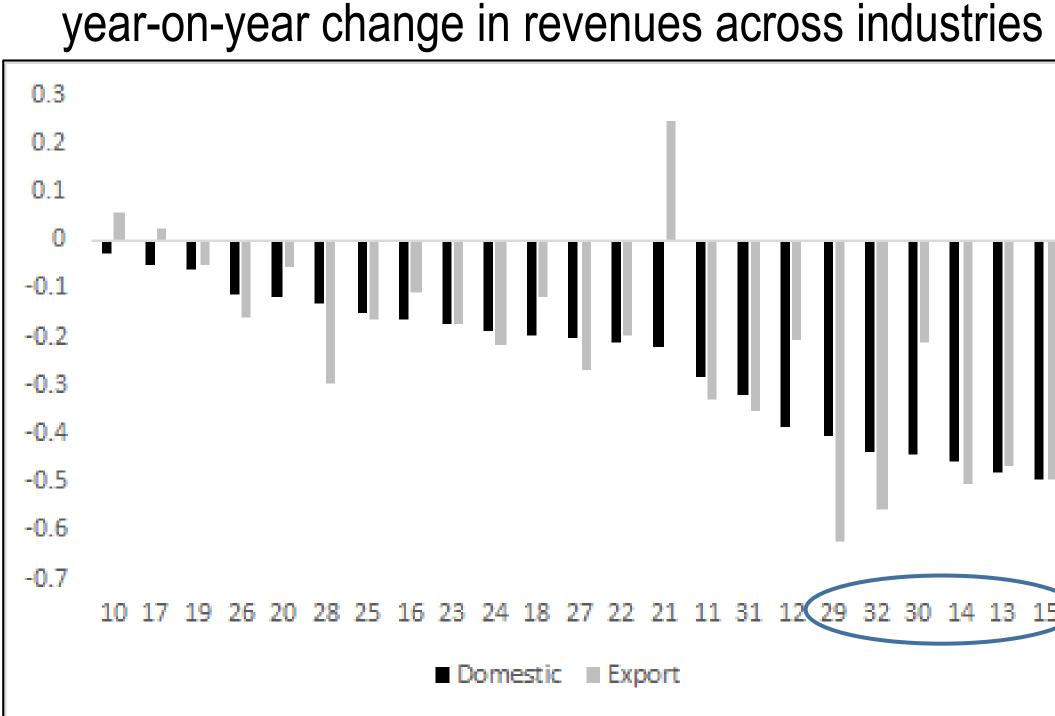
Yavuz Selim Hacihasanoglu Central Bank of the Republic of Turkey


Özlem Dursun-de Neef Goethe University Frankfurt

Ibrahim Yarba Central Bank of the Republic of Turkey

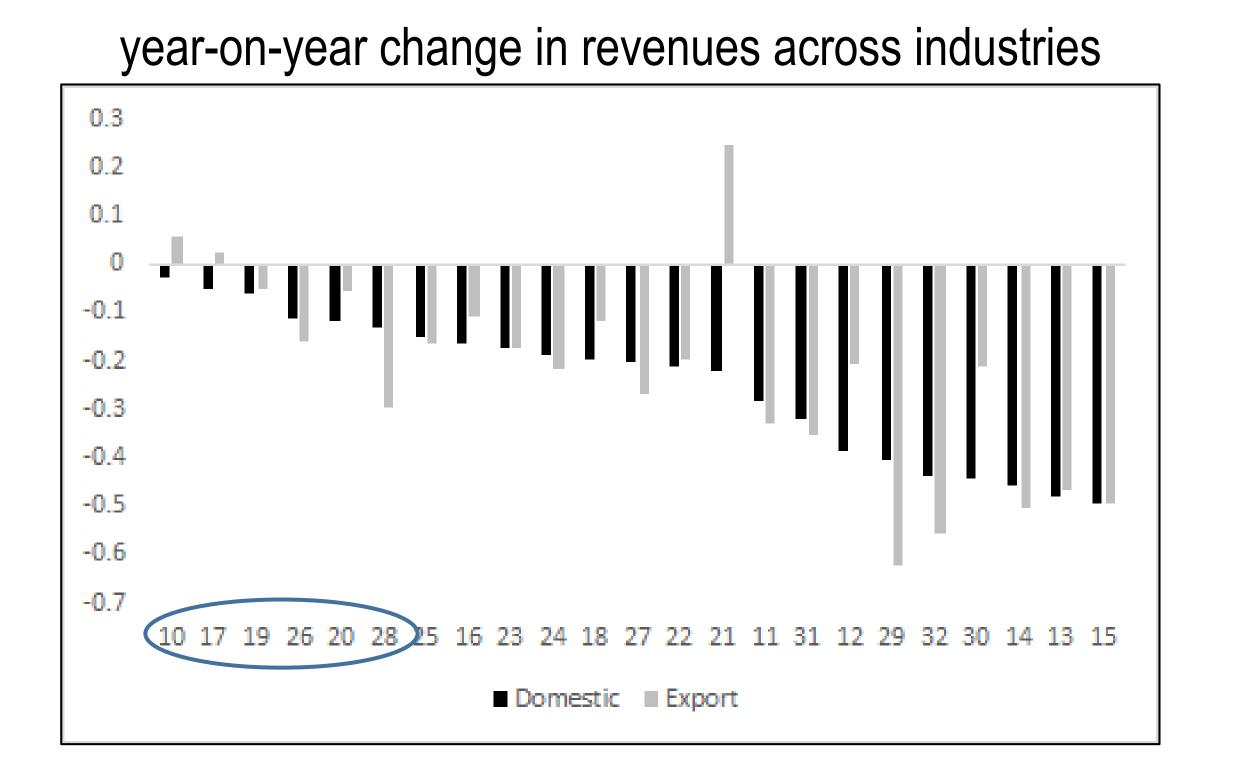

COVID-19 led to a significant drop in revenues

year-on-year change in industry revenues across time



COVID-19 led to a larger drop in revenues of some industries

COVID-19 led to a larger drop in revenues of some industries



most affected industries

- 15 leather and related products
- 13 textiles
- 14 wearing apparel
- 30 other transport equipment
- 32 other (jewellery, toys, musical inst.)
- 29 motor vehicles and trailers

COVID-19 led to a larger drop in revenues of some industries

least affected industries

- 10 food products
- 17 paper and paper products
- 19 refined petroleum products
- 26 computer, electronic and optical prod.
- 20 chemicals and chemical products
- 28 machinery and equipment

Idea:

affected industries

Research questions:

- 1) Did banks transmit the negative shock to the rest of the economy?
- 2) Are firms affected through their banks?

Banks' exposure to the shock: ex ante heterogeneity in the amount of loans issued to the

Overview of Results

- during the COVID-19 pandemic
 - the loan amount

Banks with a larger exposure to the negative shock supplied significantly less loans

• A 1 percentage point increase in the exposure led to a 6.64 percent reduction in

Negative shock is transmitted from affected industries to unaffected industries via banks Banks decreased their loans to firms operating in unaffected industries as well

Overview of Results

- Firms, on average, could not avoid a reduction in their total loans
 - Firms with a 1 percentage point higher exposure experienced a significant drop in their loans by 4 percent
- Large firms could avoid the reduction they switch to other banks
 - Firms with more than 500 employees
- Firms that had an existing relationship with a state-owned bank could borrow from state-owned banks
 - State-owned banks intermediate government support to the firms

Related Literature

- Transmission of negative shocks via banks
 - Bank liquidity shocks (Gan, 2007; Khwaja and Mian, 2008; Paravisini, 2008; Chava and Purnanandam, 2011; Dursun-de Neef, 2019)
 - Interbank linkages of banks (lyer and Peydro, 2011; lyer et al., 2014; Cingano et al., 2016)
 - Spillover of shocks across geographies (Imai and Takarabe, 2011; Koetter et al., 2020; Berrospide et al.; 2016)
- Propagation of industry-level shocks
 - Input-output linkages (Acemoglu et al., 2012, 2016; Barrot and Sauvagnat, 2016; Atalay, 2017; Caliendo et al., 2018; Carvalho et al., 2021)

Motivation

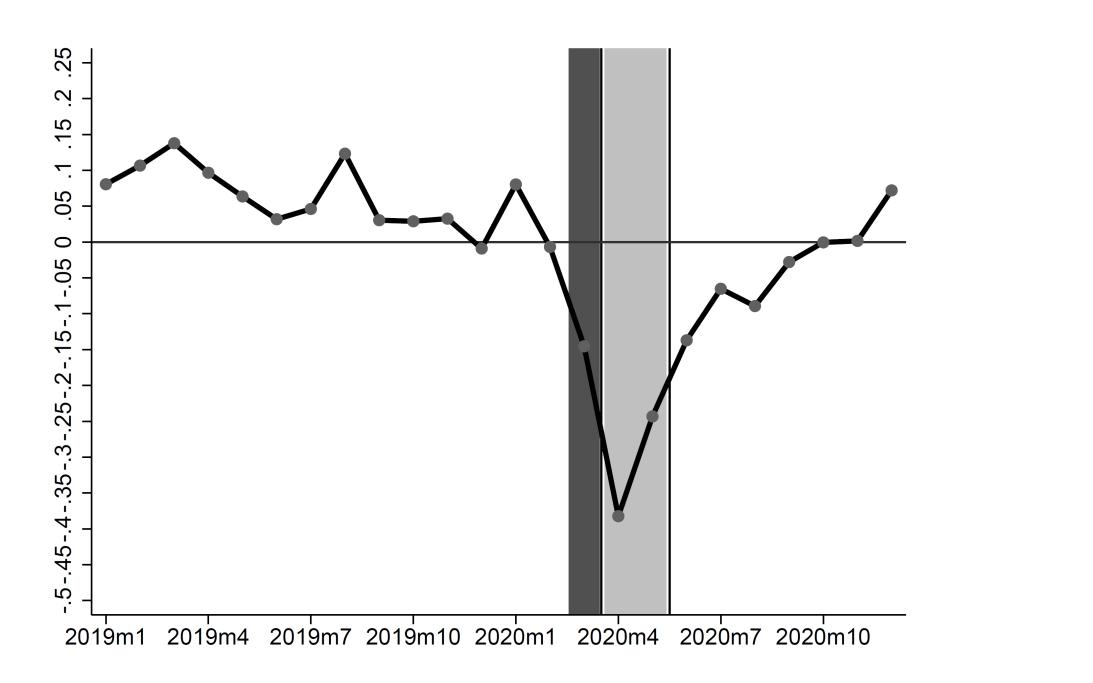
Empirical Framework

Main Results

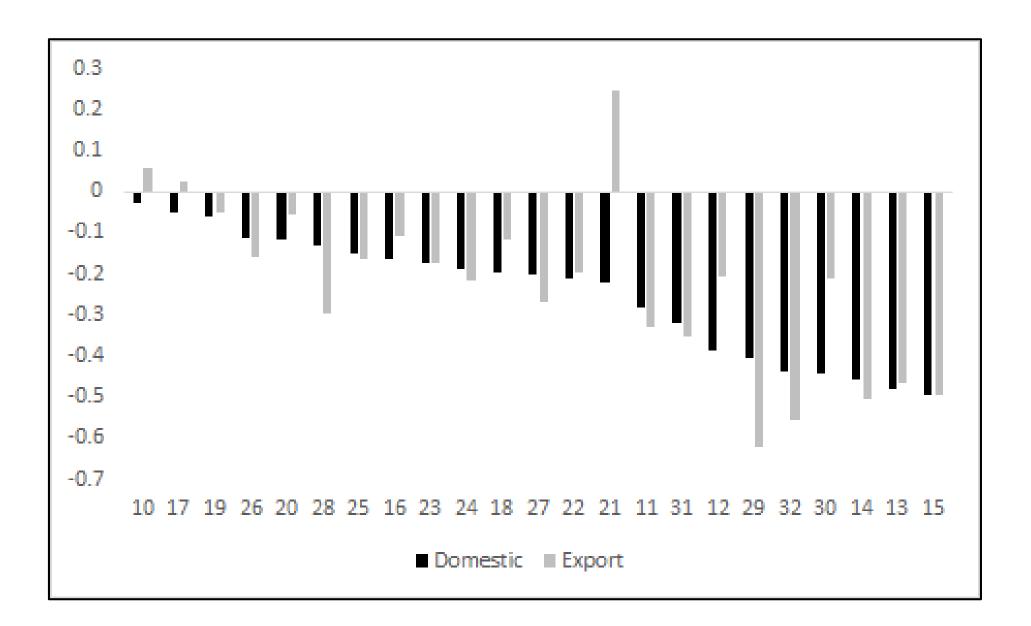
Conclusion

Empirical Framework

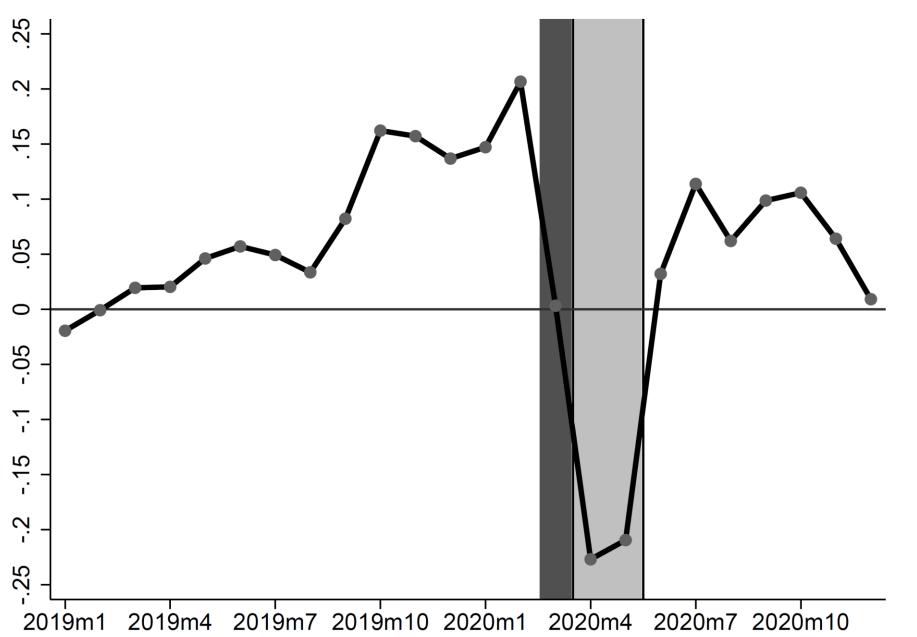
- Bank-specific exposure
 - industries
- Diff-in-diff analysis
 - challenge: disentangle demand and supply side effects
 - firm-time fixed effects (Khwaja and Mian, 2008)

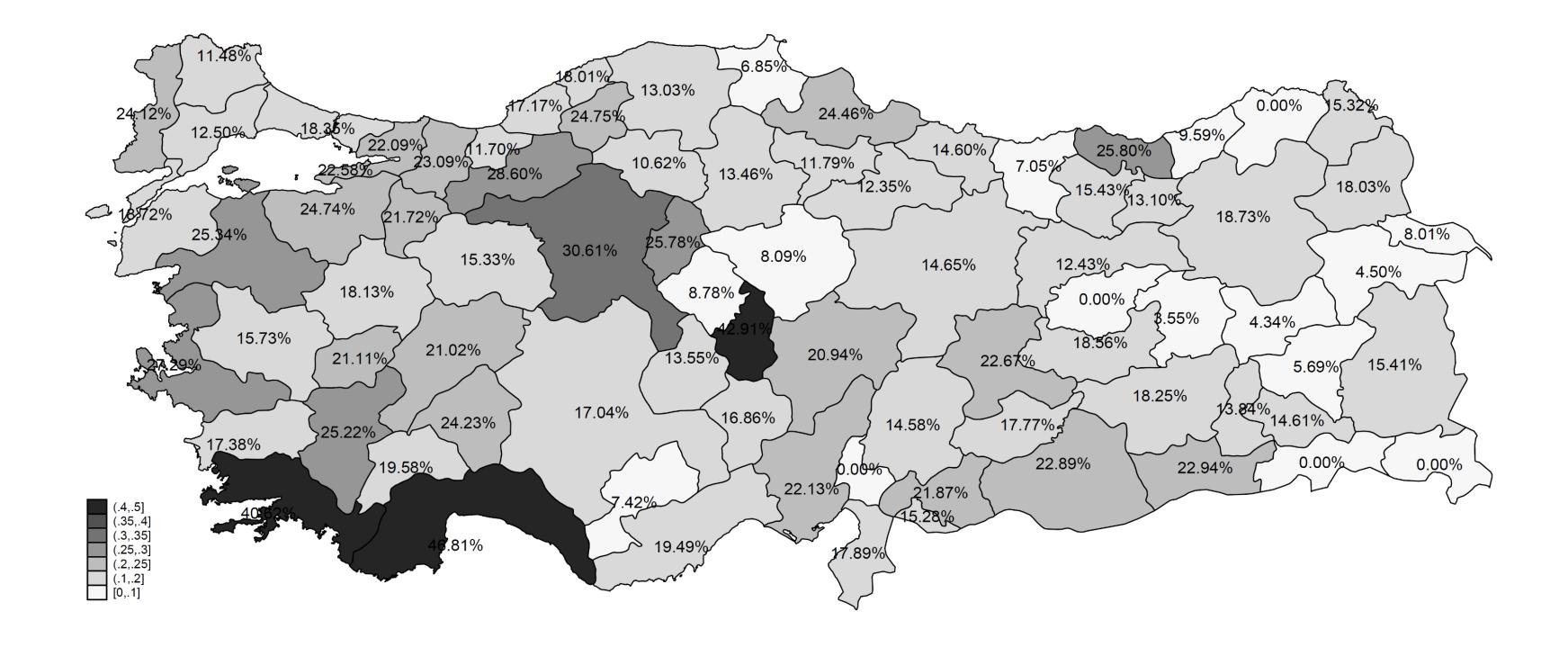

COVID-19 pandemic is used as an exogenous negative shock on industry revenues

ex ante heterogeneity in the amount of short-term loans issued to affected

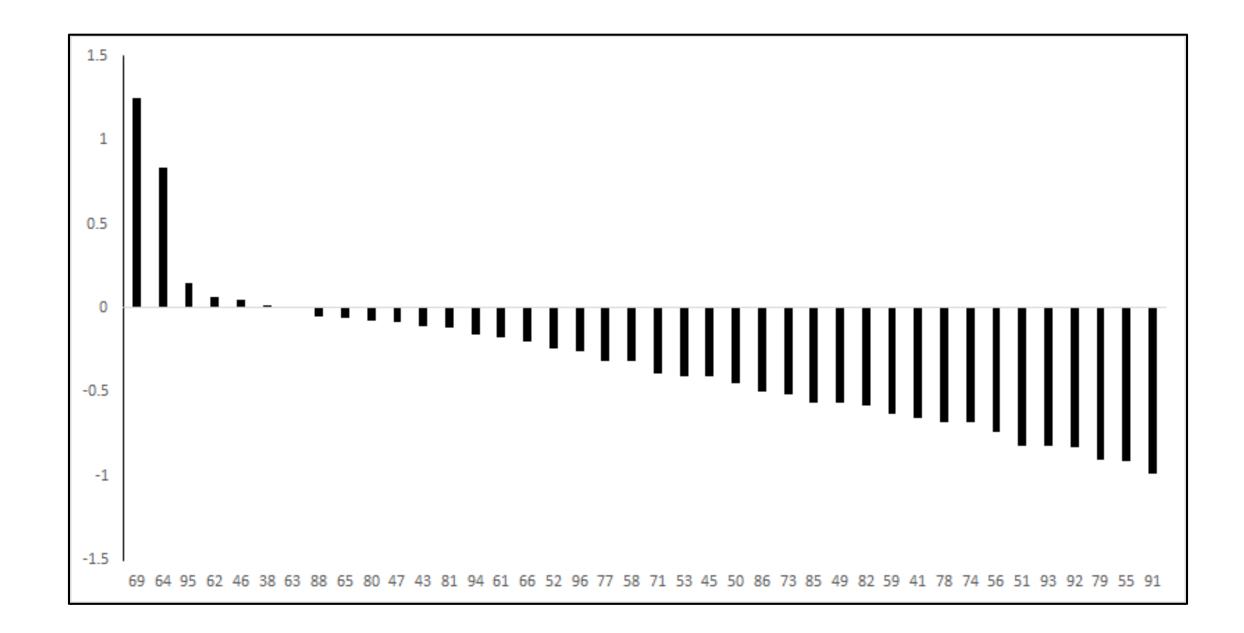

Data

- Industry-level shock
 - industry revenues (Turkish Statistical Institute)
 - credit card spending (Banks Association of Turkey)
- Impact on banks' loan supply
 - monthly bank-firm level loan data from the credit register provided by the Central Bank of the Republic of Turkey
- Firm balance sheets and firm-level annual employment
 - collected by Revenue administration and Social Security Institute

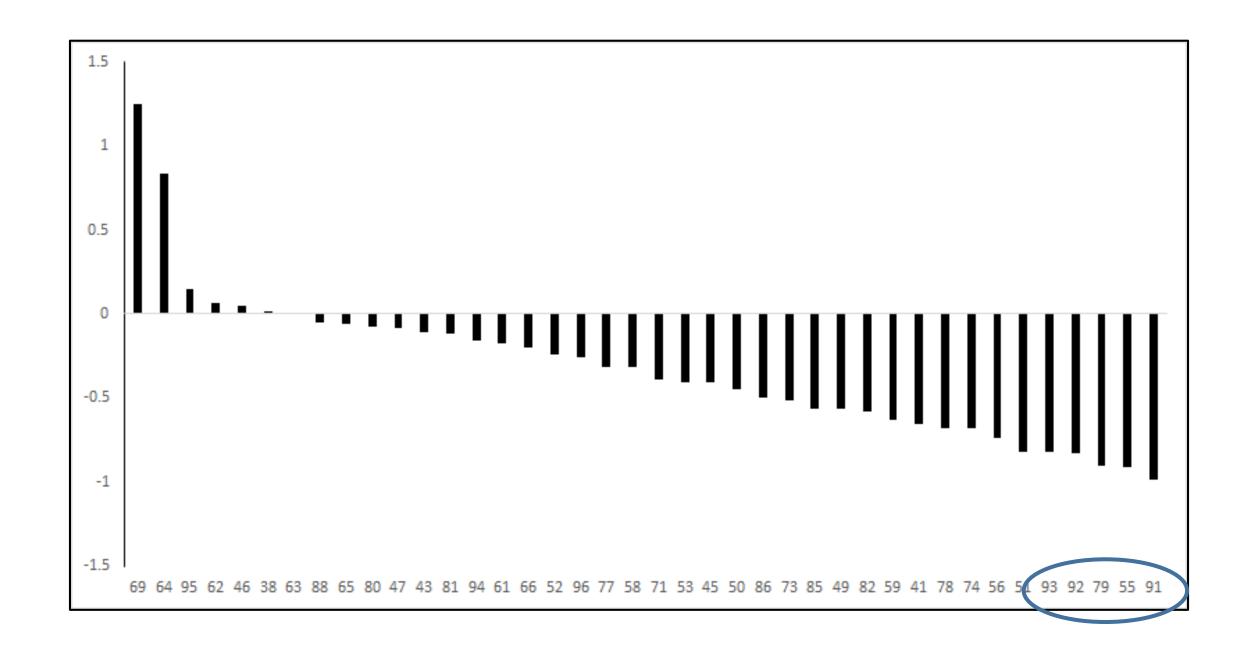

- Tradable sectors
 - monthly revenue indexes at the NACE-2 digit industrial level
 - year-on-year changes in domestic and export revenues (deflated by PPI)


- Tradable sectors
 - average change in revenues in April and May (deflated by PPI)

- Non-tradable sectors
 - daily credit card spending in 250 spending categories for all provinces
 - year-on-year changes in monthly credit card spending (deflated by CPI)



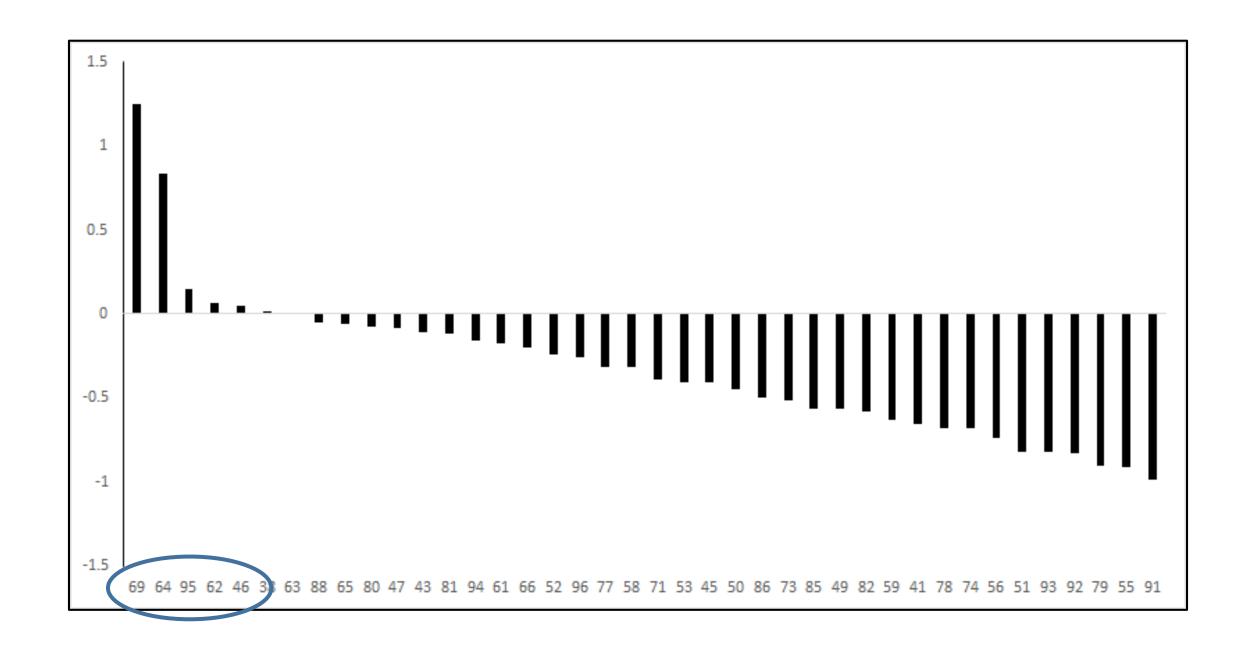
- Non-tradable sectors


average decline in credit card spending in April and May (deflated by CPI)

- Non-tradable sectors

average change in credit card spending in April and May (deflated by CPI)

- Non-tradable sectors


average change in credit card spending in April and May (deflated by CPI)

most affected industries

- 91 Libraries, museums, etc.
- 55 Hotels and similar
- 79 Travel agencies
- 92 Gambling and betting

93 – Sports, amusement and recreation

- Non-tradable sectors

average change in credit card spending in April and May (deflated by CPI)

least affected industries

- 69 Legal and accounting
- 64 Financial service activities
- 95 Repairs
- 62 Computer programming and consultancy
- 46 Wholesale trade

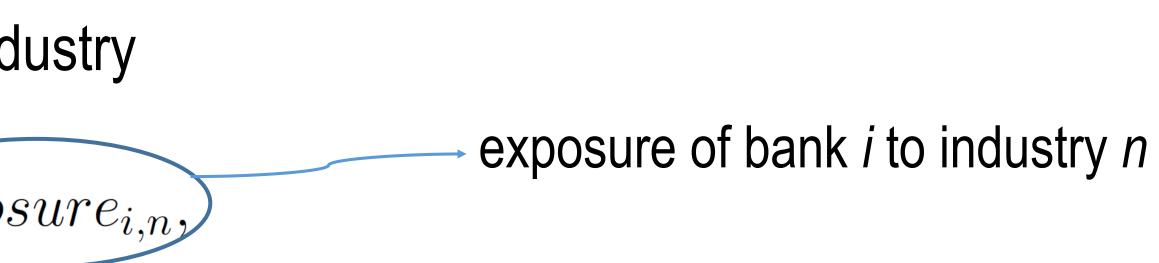
• Weighted sum of exposure to each industry

$$Exposure_{i} = \sum_{n} \frac{Loans_{i,n}}{Loans_{i}} Exposu}$$

 $ure_{i,n},$

• Weighted sum of exposure to each industry

$$Exposure_{i} = \sum_{n} \left(\frac{Loans_{i,n}}{Loans_{i}} Expose$$


 $ure_{i,n},$

pre-pandemic short-term loan portfolio shares calculated in December 2019

• Weighted sum of exposure to each industry

$$Exposure_{i} = \sum_{n} \frac{Loans_{i,n}}{Loans_{i}} Exposu}$$

• Weighted sum of exposure to each industry

$$Exposure_{i} = \sum_{n} \frac{Loans_{i,n}}{Loans_{i}} Exposure_{i}$$

tradable sectors

$$Exposure_{i,n} = \frac{DomesticSales_{i,n}}{AllSales_{i,n}}E$$

 $ure_{i,n},$

 $Exposure_n^d + \frac{Exports_{i,n}}{AllSales_{i,n}}Exposure_n^e,$

Weighted sum of exposure to each industry

$$Exposure_{i} = \sum_{n} \frac{Loans_{i,n}}{Loans_{i}} Exposure_{i}$$

tradable sectors

$$Exposure_{i,n} = \frac{DomesticSales_{i,n}}{AllSales_{i,n}}E$$

decline in domestic revenues

 $ure_{i,n}$,

 $\underbrace{Exposure_n^d}_{AllSales_{i,n}} Exposure_n^e,$

Weighted sum of exposure to each industry

$$Exposure_{i} = \sum_{n} \frac{Loans_{i,n}}{Loans_{i}} Exposure_{i}$$

tradable sectors

$$Exposure_{i,n} = \frac{DomesticSales_{i,n}}{AllSales_{i,n}}E$$

decline in domestic revenues

 $ure_{i,n}$,

 $Exposure_n^d + \frac{Exports_{i,n}}{AllSales_{i,n}} Exposure_n^e,$

decline in export revenues

Weighted sum of exposure to each industry

$$Exposure_{i} = \sum_{n} \frac{Loans_{i,n}}{Loans_{i}} Exposure_{i}$$

tradable sectors

$$Exposure_{i,n} = \frac{DomesticSales_{i,n}}{AllSales_{i,n}} Exposure_n^d + \frac{Exports_{i,n}}{AllSales_{i,n}} Exposure_n^e,$$

non-tradable sectors

$$Exposure_{i,n} = \sum_{p} \frac{Loans_{i,n,p}}{Loans_{i,n}} Exposure_{n,p},$$

 $ure_{i,n}$,

____ decline in credit card spending in industry *n* and province *p*

Diff-in-diff estimation method

 $log(Loans_{i,j,t}) = \alpha Exposure_i \times Post_t$

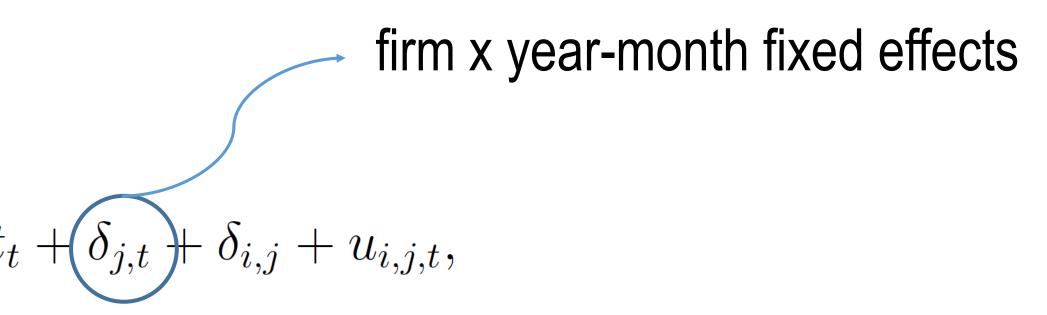
• time period: January 2019 – September 2020 (excluding March 2020)

$$t + \delta_{j,t} + \delta_{i,j} + u_{i,j,t},$$

• Diff-in-diff estimation method

 $log(Loans_{i,j,t}) = \alpha Exposure_i \times Post_t$

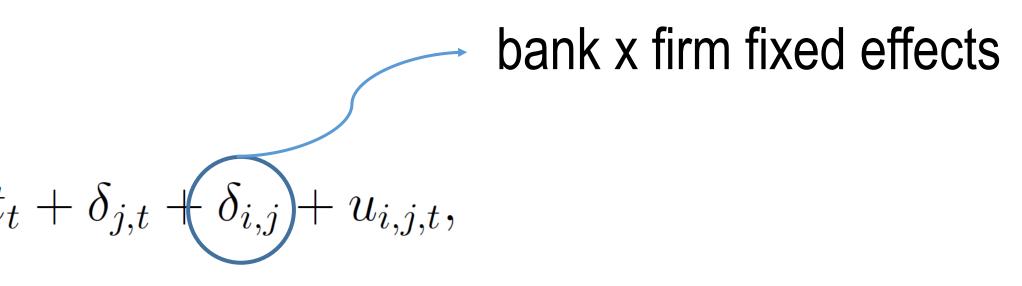
- time period: January 2019 September 2020 (excluding March 2020)
- Post = 1 from April 2020 onwards and 0 otherwise


$$t + \delta_{j,t} + \delta_{i,j} + u_{i,j,t},$$

2020 (excluding March 2020) otherwise

• Diff-in-diff estimation method

 $log(Loans_{i,j,t}) = \alpha Exposure_i \times Post_t + \delta_{j,t} + \delta_{i,j} + u_{i,j,t},$


- time period: January 2019 September 2020 (excluding March 2020)
- Post = 1 from April 2020 onwards and 0 otherwise
- to control for loan demand: firm x year-month fixed effects (Khwaja and Mian, 2008)

• Diff-in-diff estimation method

 $log(Loans_{i,j,t}) = \alpha Exposure_i \times Post_t + \delta_{j,t} + \delta_{i,j} + u_{i,j,t},$

- time period: January 2019 September 2020 (excluding March 2020)
- Post = 1 from April 2020 onwards and 0 otherwise
- to control for loan demand: firm x year-month fixed effects (Khwaja and Mian, 2008)
- bank x firm fixed effects

Diff-in-diff estimation method

 $log(Loans_{i,i,t}) = \alpha Exposure_i \times Post_t$

- time period: January 2019 September 2020 (excluding March 2020)
- Post = 1 from April 2020 onwards and 0 otherwise
- to control for loan demand: firm x year-month fixed effects (Khwaja and Mian, 2008)
- bank x firm fixed effects
- standard errors are clustered at the bank x year-month level

$$_t + \delta_{j,t} + \delta_{i,j} + u_{i,j,t},$$

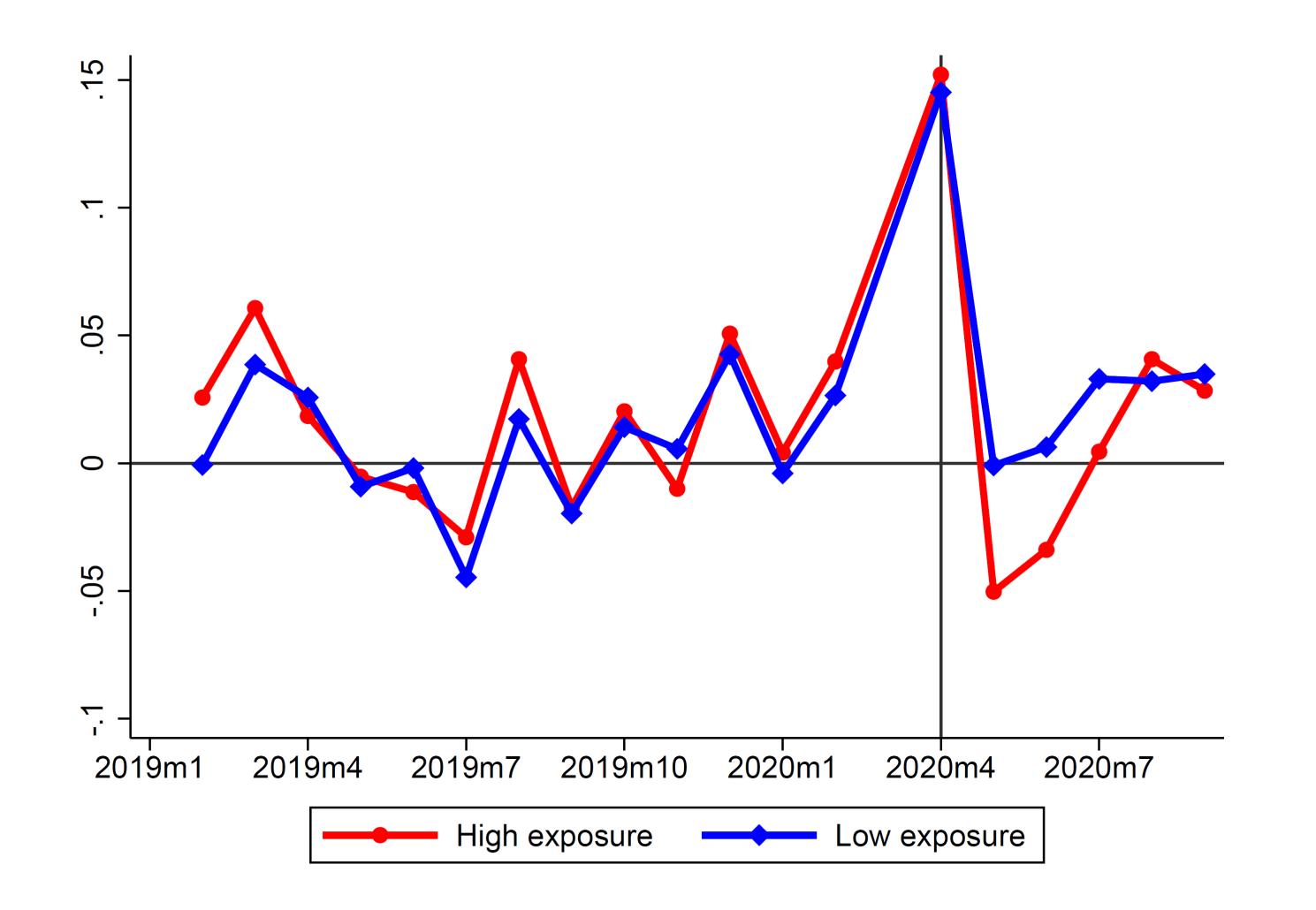
Final Sample

- We focus on privately-owned commercial banks (27 banks)
 - exclude state-owned banks: less binding financial constraints and intermediate government support during the pandemic

- Firm x year-month fixed effects
 - only multi-bank firms are included (176,628 firms)

• In total, 7,998,882 monthly bank-firm observations

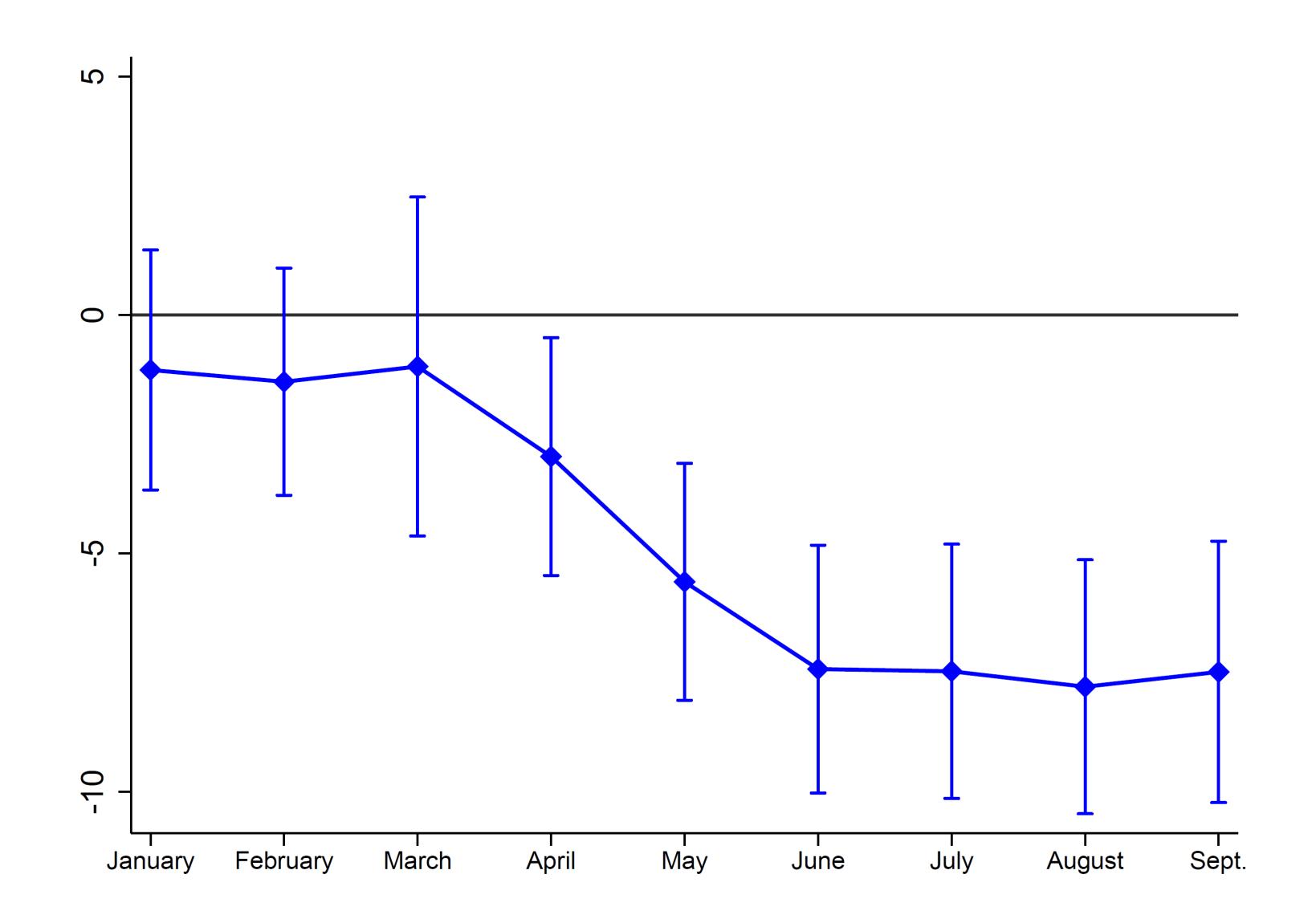
Motivation


Empirical Framework

Main Results

Conclusion

log change in average loans by bank exposure



	Total loans (1)	Short-term loans (2)	Long-term loans (3)
A- Main effect			
Post x exposure	-6.42929***	-7.52732***	-8.94413***
	(0.74741)	(0.92541)	(0.88764)
R-squared	0.913	0.870	0.944
Ν	$7,\!998,\!882$	$6,\!461,\!979$	$3,\!236,\!316$
B- Monthly effects			
April x exposure	-3.70352**	-2.84975**	-8.19529***
	(1.79474)	(1.34877)	(1.85545)
May x exposure	-5.89784^{***}	-5.57519***	-9.04003***
	(1.21049)	(1.49419)	(1.06114)
June x exposure	-7.46207***	-8.66790***	-8.76738***
	(1.14931)	(1.34791)	(1.48603)
July x exposure	-7.40921***	-9.51883***	-8.67894***
	(1.26175)	(1.27889)	(1.56651)
August x exposure	-7.54376***	-9.87282***	-9.17271***
	(1.38666)	(1.24974)	(1.92158)
September x exposure	-7.15358***	-9.63658***	-10.23669***
	(1.34657)	(1.24181)	(2.16601)
R-squared	0.913	0.870	0.944
Ν	$7,\!998,\!882$	$6,\!461,\!979$	$3,\!236,\!316$

*** p<0.01, ** p<0.05, * p<0.1

- Higher exposure leads to a significant reduction in banks' loan supply
- 1 p.p. increase in the exposure led to a 6.64 percent reduction

• Both short- and long-term loans are affected

• Less- vs more-affected industries

	Less-a	affected indu	stries	More-	affected indu	istries
	Total loans (1)	Short-term loans (2)	$\begin{array}{c} \operatorname{Long-term} \\ \operatorname{loans} \\ (3) \end{array}$	Total loans (4)	Short-term loans (5)	Long-term loans (6)
Post x exposure	-6.67450^{***} (0.71450)	-7.41333^{***} (0.97230)	-9.87973^{***} (0.97822)	-6.24386^{***} (0.74711)	-7.48094^{***} (0.87599)	-8.62280*** (0.84906)
R-squared	0.903	0.865	0.934	0.915	0.871	0.946
Ν	$3,\!277,\!346$	$3,\!277,\!346$	$3,\!277,\!346$	$2,\!645,\!843$	$2,\!645,\!843$	$2,\!645,\!843$

*** p<0.01, ** p<0.05, * p<0.1

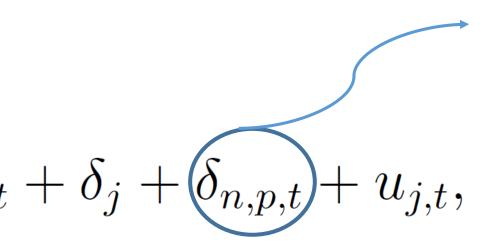
 Reduction in banks' loan supply is of sir industries

• Reduction in banks' loan supply is of similar size across firms in less- and more-affected

• whether firm size matters

	Total loans				
	$\begin{array}{l} \text{Employment} \\ < 250 \\ (1) \end{array}$	$\begin{array}{l} \text{Employment} \\ \geq 250 \\ (2) \end{array}$	$\begin{array}{c} \text{Employment} \\ \geq 500 \\ (3) \end{array}$	$\begin{array}{c} \text{Employment} \\ \geq 1000 \\ (4) \end{array}$	
Post x exposure	-6.73936^{***} (0.79145)	-3.11367^{***} (0.49973)	-3.04048^{***} (0.55829)	-2.50322^{***} (0.68268)	
R-squared	0.907	0.912	0.870	0.909	
Ν	7,763,268	$235,\!614$	180,421	$17,\!475$	

*** p<0.01, ** p<0.05, * p<0.1


Bank are more hesitant to decrease their loans to larger firms

Firm-level Regression

Diff-in-diff estimation method

 $log(Loans_{j,t}) = \alpha Exposure_j \times Post_t + \delta_j + (\delta_{n,p,t}) + u_{j,t},$

- time period: January 2019 September 2020 (excluding March 2020)
- Post = 1 from April 2020 onwards and 0 otherwise
- industry x province x year-month fixed effects
- firm fixed effects
- standard errors are clustered at the firm level

industry x province x year-month fixed effects

Firm-level Regression

• Diff-in-diff estimation method

$$log(Loans_{j,t}) = \alpha Exposure_j \times Post_t$$

• firm-level exposure:

$$Exposure_{j} = \sum_{i} \frac{Loans_{i,j}}{Loans_{j}} Exposure_{i},$$

firm *j*'s exposure to the shock via its banks

 $\xi_t + \delta_j + \delta_{n,p,t} + u_{j,t},$

	Total loans	Bank	Number of	State-owned
	(1)	$\begin{array}{c} \text{exposure} \\ (2) \end{array}$	${ m banks}\ { m (3)}$	
A- Main effect				
Post x exposure	-3.84251^{***} (0.30315)	-0.06805^{***} (0.00391)	-1.77516^{***} (0.21662)	0.16367^{***} (0.05008)
R-squared	0.899	0.889	0.920	0.826
Ν	$5,\!549,\!367$	$5,\!549,\!367$	$5,\!549,\!367$	$5,\!549,\!367$
B- Monthly effects				
April x exposure	-1.40784***	-0.01092***	-1.31427***	0.25999 * * *
	(0.30325)	(0.00288)	(0.20355)	(0.04706)
May x exposure	-2.88282***	-0.04352***	-1.45548^{***}	0.19783^{***}
	(0.33849)	(0.00394)	(0.21955)	(0.05182)
June x exposure	-4.33092***	-0.07036***	-1.64166^{***}	0.17653^{***}
	(0.33653)	(0.00418)	(0.23412)	(0.05411)
July x exposure	-4.84365***	-0.08703***	-2.01625***	0.13821**
	(0.34527)	(0.00497)	(0.23990)	(0.05548)
August x exposure	-4.78704***	-0.09603***	-2.02324***	0.12058^{**}
	(0.35277)	(0.00511)	(0.24915)	(0.05663)
September x exposure	-4.91509***	-0.10355***	-2.23281***	0.08314
	(0.35841)	(0.00507)	(0.26065)	(0.05730)
R-squared	0.899	0.889	0.920	0.826
Ν	$5,\!549,\!367$	$5,\!549,\!367$	$5,\!549,\!367$	$5,\!549,\!367$

*** p < 0.01, ** p < 0.05, * p < 0.1

- Firms could not avoid a reduction in their total loans
- 1 p.p. increase in firms' exposure led to an almost 4 percent drop

Government support through state-owned banks

	Without state-owned bank relationship			With state-owned bank relationship			onship	
	Total loans (1)	Bank exposure (2)	Number of banks (3)	State-owned share (4)	Total loans (5)	Bank exposure (6)	Number of banks (7)	State-owned share (8)
Post x exposure	-4.81021^{***} (0.41575)	-0.05220^{***} (0.00432)	-0.70027^{***} (0.21013)	-0.09137^{*} (0.05413)	-2.81100^{***} (0.39893)	-0.09716^{***} (0.00777)	-3.20009^{***} (0.48500)	$\begin{array}{c} 0.46799^{***} \\ (0.10247) \end{array}$
R-squared	0.847	0.904	0.919	0.409	0.903	0.825	0.900	0.727
Ν	$3,\!540,\!952$	$3,\!540,\!952$	$3,\!540,\!952$	$3,\!540,\!952$	$1,\!990,\!869$	$1,\!990,\!869$	$1,\!990,\!869$	$1,\!990,\!869$

- increase in the share of its loans from state-owned banks
- As a result, they had a significantly less reduction in their total loans

• Firms with an existing relationship with a state-owned bank experienced a significant

Less- vs more-affected industries

Less-affected industries				More-affected industries			
Total loans (1)	Bank exposure (2)	Number of banks (3)	State-owned share (4)	Total loans (5)	Bank exposure (6)	Number of banks (7)	State-owned share (8)
-4.13593^{***} (0.51824)	-0.07474^{***} (0.00609)	-1.40268^{***} (0.36960)	0.17505^{**} (0.08019)	-3.61572^{***} (0.48439)	-0.09562^{***} (0.01252)	-2.15948^{***} (0.38424)	0.28156^{***} (0.09071)
0.898	0.858	0.922	0.924	0.791	0.876	0.920	0.821
$2,\!086,\!085$	$2,\!086,\!085$	$2,\!086,\!085$	$2,\!086,\!085$	$2,\!067,\!175$	$2,\!067,\!175$	$2,\!067,\!175$	$2,\!067,\!175$
	$(1) \\ -4.13593^{***} \\ (0.51824) \\ 0.898$	$\begin{array}{c} & \text{exposure} \\ (1) & (2) \\ \hline -4.13593^{***} & -0.07474^{***} \\ (0.51824) & (0.00609) \\ \hline 0.898 & 0.858 \end{array}$	$\begin{array}{ccc} & exposure & banks \\ (1) & (2) & (3) \\ \hline -4.13593^{***} & -0.07474^{***} & -1.40268^{***} \\ (0.51824) & (0.00609) & (0.36960) \\ \hline 0.898 & 0.858 & 0.922 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	exposure (1)banks (2)share (3)exposure (4)banks (5)banks (6)banks (7) -4.13593^{***} (0.51824) -0.07474^{***} (0.00609) -1.40268^{***} (0.36960) 0.17505^{**} (0.08019) -3.61572^{***} (0.48439) -0.09562^{***} (0.01252) -2.15948^{***} (0.38424) 0.898 0.858 0.922 0.924 0.791 0.876 0.920

• Firms in both types of industries experienced a significant reduction in their loan supply

• Whether firm size matters

	Total loans				
	$\begin{array}{l} \text{Employment} \\ < 250 \\ (1) \end{array}$	$\begin{array}{l} \text{Employment} \\ \geq 250 \\ (2) \end{array}$	$\begin{array}{l} \text{Employment} \\ \geq 500 \\ (3) \end{array}$	$\begin{array}{l} \text{Employment} \\ \geq 1000 \\ (4) \end{array}$	
Post x exposure	-3.90016^{***} (0.30860)	-4.67089^{***} (1.75140)	-2.69234 (2.95507)	-2.10404 (2.99810)	
R-squared	0.895	0.805	0.908	0.907	
Ν	$5,\!470,\!850$	$71,\!126$	$27,\!680$	10,717	

*** p<0.01, ** p<0.05, * p<0.1

• Large firms could switch to other banks and avoid a reduction in their total loans

• Impact on firm sales

	$\begin{array}{c} \text{All} \\ (1) \end{array}$	Tradable industries (2)	Non-tradable industries (3)
Q2 x industry exposure	-0.72816***	-0.83989***	-0.72757***
	(0.00890)	(0.02680)	(0.00943)
Q3 x industry exposure	-0.12301***	-0.03103	-0.13033***
	(0.00878)	(0.02467)	(0.00935)
Q2 x exposure	-0.89483***	0.10173	-1.54909***
	(0.27749)	(0.46102)	(0.34408)
Q3 x exposure	-0.82129***	-1.03885^{**}	-0.76715**
	(0.28178)	(0.47216)	(0.34855)
R-squared	0.921	0.915	0.945
Ν	$575,\!151$	$145,\!897$	$429,\!254$

*** p<0.01, ** p<0.05, * p<0.1

• Higher exposure to the shock led to a significant drop in firm sales

Motivation

Empirical Framework

Main Results

Conclusion

- economy through banks
 - the COVID-19 pandemic

- Large firms could avoid the shock by switching to less-exposed banks
- from state-owned banks

Negative shocks affecting certain industries can be transmitted to the rest of the

identification: exogeneity and heterogeneity of industry-level shocks caused by

highlight the interconnectedness of the economy through financial intermediaries

Firms that had a relationship with a state-owned bank could alleviate it by borrowing