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Introduction

Countries of the world have committed to ambitious climate goals
▶ Paris agreement, net-zero targets

Achieving those goals requires innovation in clean technologies
▶ Radical changes to many sectors of the economy (IPCC, 2023)

Policies affect market power
▶ Some firms rely more on fossil fuels than others (lock-in)

▶ Winners and losers within industries

How does market power affect the transition from a dirty to a
clean economy?
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Contribution and results

Contribution to the literature:
▶ Empirical evidence on market power and the direction of innovation:

cannot be explained by current theories

▶ A theoretical model that incorporates empirical findings and explores the
relevance for climate policy

Preview of findings:
▶ Data: market leaders are, on average, more invested in dirty technologies

than their direct competitors

▶ Theory: climate policy can lead to a strategic increase in dirty innovation
by some firms because of the “escape competition effect”

▶ Calibration: ambitious climate policy leads to a (mostly clean) research
boom and lower aggregate markups along the green transition
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Motivating evidence

Establish the following facts:

1. The direction of innovation is path dependent

2. Market power and path dependence are correlated within industries

Evidence suggests that market leaders are more invested in dirty
technologies than their competitors

▶ More difficult to make them switch to clean

Data from Orbis IP and Historical
▶ 130 million patent applications; 1.4 million inventions

▶ Classified as clean, dirty, neutral following Jee and Srivastav (2023)

▶ Mostly energy, manufacturing, transport technologies

▶ Link between firms’ patents and balance sheets

Data Shares clean dirty Totals clean dirty Types of clean technologies Types of dirty technologies

Gray as a share of dirty Patents by applicant country Patents by applicant sector
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Path dependence in innovation

Knowledge stocks: KT
it = PT

it + (1− δ)KT
it−1, with T ∈ {C ,D}

Innovation gapit = sinh−1(PC
it )− sinh−1(PD

it )

Technology gapit = sinh−1(KC
it )− sinh−1(KD

it )

The direction of innovation is path dependent:
▶ Clean patenting depends positively on KC and negatively on KD

Regression table

▶ Vice versa for dirty patenting

▶ In line with the literature
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Which firms are most invested in dirty technologies?

I define:
▶ Leaders: top 10 firms in terms of revenue in country-sector-year

▶ Laggards: firms in ranks 11-20

Figure: Distribution of the technology gap for leaders and laggards in 2018
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Which firms are most invested in dirty technologies?

Within a country-industry-year, technology gap correlates
negatively with:

▶ Firm size, profitability and age Regression table

▶ Being a market leader Regression table

So, firms with more market power tend to be dirtier.

Suggests that:
▶ Large firms need a stronger incentive to switch to clean than smaller firms

▶ Climate policy can affect market power

Cannot be explained by the current literature, so let’s incorporate
these findings in a model

▶ What does this mean for climate policy?
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Model overview

Continuous time endogenous growth model:
▶ Representative consumer

▶ Final good consists of a continuum of intermediates

▶ Exponential-quadratic damages from climate change (Nordhaus and
Moffat, 2017)

▶ Temperature linear in historical emissions (Dietz and Venmans, 2019)

Details

Each intermediate input sector has:
▶ Two firms that compete on prices (limit pricing) (Akcigit and Ates, 2023)

▶ Good produced using either a clean or a dirty technology

▶ Stepwise innovation in clean and dirty

▶ Knowledge diffusion

Production Innovation Technology gaps Static decision Dynamic decision
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Technology gaps
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The effect of a tax
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Figure: A carbon tax affects the effective technology gap
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Stepwise innovation
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A partial equilibrium result

The increase or introduction of a carbon tax in a single sector can
increase a firm’s dirty innovation efforts:

▶ Tax decreases effective technology gap

▶ Increased competition and innovation due to escape competition effect
(Aghion et al., 2005)

Figure: Innovation efforts for different technology gaps
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Calibration

Solve for the general equilibrium in closed form

General equilibrium BGP µmt by group wt , ωt , Yt , Et , R
C
t , R

D
t Law of motion Qt , ψklmt , µmt

Calibrate model to world economy in 2010s
▶ External parameters from the literature

▶ Initial conditions based on patent and financial data

▶ Internal calibration of remaining parameters following Akcigit and Ates
(2023)

External parameters Initial conditions Calibration results and model fit

Two quantitative exercises:
▶ Simulate BGP: business as usual

▶ Transition after large carbon tax increase in 2024 (Paris goal in 2100)
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Balanced growth path

Figure: Balanced growth path simulated forward
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The effects of a carbon tax

Figure: Transition after a large carbon tax increase in 2024
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Conclusions

▶ Data suggests that market leaders are more invested in dirty
technologies than their competitors

▶ Model shows how this impacts the green transition
▶ Some firms increase their dirty innovation
▶ Increased innovation and competition along the transition

▶ Suggests that transition may be less costly than anticipated
▶ But it may not be so simple (overinvestment in R&D)

▶ Considering the strategic incentives for large incumbents is
key for a successful green transition
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Data

Orbis IP
▶ 130 million patent applications; 1.4 million inventions

▶ 1978-2018
▶ Counts of triadic patent families to avoid double counting and low

quality inventions
▶ Classified as clean, dirty, neutral following Jee and Srivastav (2023)
▶ Mostly energy, manufacturing, transport technologies
▶ Link to financial data

Orbis Historical
▶ Balance sheet and other financial data for millions of firms

▶ 2010-2018
▶ Mostly developed countries
▶ Revenue, employees, profit, age, sector
▶ Issues with coverage and representativeness
▶ Focus on matched firms and top firms per sector
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Clean and dirty patenting

Figure: Share of clean and dirty patents over time
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Figure: Different types of clean technologies
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Figure: Different types of clean technologies
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Figure: Share of gray patents among dirty patents
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Figure: Total clean and dirty patents over time
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Figure: Patents by applicant country
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Figure: Patents by applicant sector

Sectors are classified using the NACE Rev. 2 classification. The sectors in the figure are the following. 26:
Manufacture of computer, electronic and optical products; 20: Manufacture of chemicals and chemical
products; 28: Manufacture of machineryand equipment n.e.c.; 46: Wholesale trade, except of motor vehicles
and motorcycles; 27: Manufacture of electrical equipment; 72: Scientific research and development; 29:
Manufacture of motor vehicles, trailers and semi-trailers; 64: Financial service activities, except insurance and
pension funding; 22: Manufacture of rubber and plastic products; 30: Manufacture of other transport
equipment.
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Table: Path dependence in innovation

(1) (2) (3) (4)
Clean Dirty Innovation gap (clean-dirty)

Log KC 0.525∗∗∗ -0.196∗∗∗ 0.020∗∗∗

(0.021) (0.013) (0.003)
Log KD -0.032 0.879∗∗∗ -0.041∗∗∗

(0.021) (0.017) (0.002)
Technology gap (clean-dirty) 0.241∗∗∗

(0.007)

Estimator Poisson Poisson OLS OLS
(Pseudo) R2 0.55 0.58 0.12 0.24
Observations 6,624,288 6,624,288 4,215,743 4,112,920

Notes: All independent variables are first lags. OLS regressions include country-sector-year fixed effects
(sectors defined at the four-digit level). Further controls in columns 1 through 3 are the stock of patents in
any category and dummies that are 1 if the stock variables equal zero (one dummy for each stock). Further
controls in column 4 are the stock of patents in any category, a dummy that is 1 if the stock of patents is
zero, and a dummy that is 1 if the technology gap is zero. Standard errors are clustered at the firm level.
The sample covers the years 1978-2018.
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Table: Technology gaps and market power

(1) (2) (3) (4)
Technology gap (clean-dirty)

Log revenue -0.005∗∗∗ -0.004∗

(0.002) (0.002)
Log employment 0.001 -0.001

(0.002) (0.002)
Profit margin 0.000 0.000

(0.000) (0.000)
Log age 0.002 0.003

(0.002) (0.003)
Leader -0.045∗∗∗ -0.023∗∗∗

(0.011) (0.006)
Laggard -0.008 -0.003

(0.008) (0.005)

Sectors (for leader and f.e.) Two-digit Two-digit Four-digit Four-digit
R2 0.06 0.05 0.16 0.13
Observations 223,088 401,587 208,462 380,164

Notes: All regressions are OLS with country-sector-year fixed effects. Column 2 and 4 define leaders as the
top 10 firms in their two-digit and four-digit sector in terms of revenue, respectively. Fixed effects are defined
at the two-digit sector in columns 1 and 2 and at the four-digit level in columns 3 and 4. All independent
variables are contemporaneous values. Standard errors are clustered at the firm level. The sample covers the
years 2010-2018.
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Table: Heterogeneity in technology gaps (four-digit sectors)

(1) (2) (3) (4)
Technology gap (clean-dirty)

Log revenue -0.003∗∗∗

(0.001)
Log employment -0.004∗∗∗

(0.001)
Profit margin -0.000

(0.000)
Log age -0.004∗∗∗

(0.001)

R2 0.13 0.14 0.15 0.10
Observations 372,506 342,421 262,588 835,951

Notes: All regressions are OLS with country-sector-year fixed effects. Fixed effects are defined at the
four-digit sector. All independent variables are contemporaneous values. Standard errors are clustered at the
firm level. The sample covers the years 2010-2018.
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Preferences, final good, global warming

Representative consumer: Ut =
∫∞
s=t

exp
(
− ρ(s − t)

)
ln(Cs)ds,

Labor L is supplied inelastically to production or R&D, Lt = 1

Final good: lnYt = − γ
2
T 2

t +
∫ 1

0
ln yjtdj ,

with damages from global warming T , scaled by γ

Global warming: Ṫt = ε(ζSt − Tt),

with ζ the linear effect of cumulative emissions St =
∫ t

0
Esds on temperature

and ε a delay parameter (Dietz and Venmans, 2019)
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Intermediate good sectors

Firms: each sector j consists of two firms, i and −i , which compete on prices

Production: yijt = yC
ijt + yD

ijt = qC
ijt l

C
ijt + qD

ijt min
{
lDijt ,

eijt
κ

}
,

with q productivity, l labor, e emissions, C clean, D dirty

Total costs: TCit = wt l
C
it + wt l

D
it + τEt eit = wt l

C
it + wt(1 + κτt)l

D
it ,

with w wage and τEt = τtwt carbon price relative to labor

Marginal costs: MCit = min{MCC
it ,MCD

it } = min
{

wt

qCit
, wt (1+κτt )

qDit

}
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Innovation

Innovation steps: in case of a successful innovation, qF
i(t+∆t) = λqF

it ,

where F ∈ {C ,D}

So, qF
it = λnFit , where nF

it is the number of innovation steps that firm i has taken
for technology F (assuming qF

i0 = 1)

Innovation costs: Rit = α
x
β
it
β
wt ,

where x is the innovation arrival rate

Knowledge diffusion: catch up with leader with exogenous arrival rate δ
(technology gap becomes 0)
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Technology gaps

Own, clean, dirty:

Own technology gap: mT
it = nC

it − nD
it

Clean technology gap: mC
it = nC

it − nC
−it

Dirty technology gap: mD
it = nD

it − nD
−it

Firm i uses clean to produce iff mT
it + τ̃t ≥ 0 with τ̃t ≡ ln(1+κτt )

ln(λ)

Effective technology gap:

mE (mC
it ,m

D
it ,m

T
it , τt) =


mC

it if mT
it + τ̃t ≥ 0, mT

−it + τ̃t ≥ 0

mD
it +mT

it + τ̃t if mT
it + τ̃t ≥ 0, mT

−it + τ̃t < 0

mC
it −mT

it − τ̃t if mT
it + τ̃t < 0, mT

−it + τ̃t ≥ 0

mD
it if mT

it + τ̃t < 0, mT
−it + τ̃t < 0
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Static competition

Demand: yjt =
Yt
pjt

Bertrand competition: limit pricing:

pjt =

{
MC−it if mE

it ≥ 0

MCit if mE
it ≤ 0

Only market leader makes a profit:

π(mE
it ) =

(pjt −MCit)yit =
(
1− 1

λ
mE
it

)
Yt if mE

it > 0

0 if mE
it ≤ 0

Also gives each firm’s output, labor demand and emissions
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Innovation decision

Direction:

▶ Currently clean firms (mT
it + τ̃t ≥ 0) innovate in clean technology

▶ Currently dirty firms (mT
it + τ̃t < 0) innovate in dirty technology

Intensity: maximize NPV of profits given current effective technology gap m

A normalized value function for each possible m: vmt = Vmt/Yt

For leaders (m > 0):

ρvmt − v̇mt = max
xmt

{
1− 1

λm
− α

xβmt

β
ωt + xmt [vm+1,t − vmt ]

+ x−mt [vm−1,t − vmt ] + δ[v0,t − vmt ]
}
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General equilibrium

Define:
▶ Maximum effective gap m

▶ Maximum distance between clean and dirty mT

▶ Aggregate productivity index Qt = exp
( ∫ 1

0
ln(qLjt)dj

)
▶ Gap size distribution to keep track of technology gaps (3 state variables

per sector): ψklmt =
∫ 1

0
1
{
mT

Ljt = k ∧mT
Fjt = l ∧mE

Ljt = m
}
dj

▶ Effective gap size distribution µmt =
∑mT

k=−mT

∑mT

l=−mT ψklmt (by group)

Gives closed form solutions for ωt ,Et ,wt ,Yt ,R
C
t ,R

D
t
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Balanced growth

Along the balanced growth path...
▶ The effective gap distribution is constant

▶ The gap between clean and dirty within sectors is growing

▶ There are no “mixed sectors” due to knowledge diffusion

▶ TFP growth is constant (but, if Et > 0, output growth is not)
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µDD
mt =

∑
k∈MD

t

∑
l∈MD

t

ψklmt ,

µCD
mt =

∑
k∈MC

t

∑
l∈MD

t

ψklmt ,

µDC
mt =

∑
k∈MD

t

∑
l∈MC

t

ψklmt ,

µCC
mt =

∑
k∈MC

t

∑
l∈MC

t

ψklmt ,

θ1t =
∑

m∈Mt

µDD
mt ,

θ2t = θ1 +
∑

m∈Mt

µCD
mt ,

θ3t = 1−
∑

m∈Mt

µCC
mt
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ωt =

( ∑
k∈Mt

µDD
kt + µCD

kt

(1 + κτt)λk
+
µDC
kt + µCC

kt

λk

)(
1−

∑
k∈Mt

µkt(x
β
Ljt + xβFjt)

)−1

,

Et =
κ

ωt

∑
k∈Mt

µDD
kt

(1 + κτt)λk
+
µDC
kt

λk
,

wt =
Qtλ

−
∑

k∈Mt
µktk exp

(
− γ

2
T 2

t

)
(1 + κτt)θ2t

,

Yt =
wt

ωt
,

Gt = τtwtEt

RC
t =

αwt

β

∑
k∈Mt

µCD
kt xβkt + µDC

kt xβ−kt + µCC
kt (x

β
kt + xβ−kt),

RD
t =

αwt

β

∑
k∈Mt

µDD
kt (xβkt + xβ−kt) + µCD

kt xβ−kt + µDC
kt xβkt
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ln(Qt+∆t)− ln(Qt) =
[
2µ0tx0t +

∑
k∈M≥1t

µktxkt + µpt(xpt + (1− p)x−pt)

+ µ1−pt(x1−pt + pxp−1t)
]
ln(λ)∆t + o(∆t)

ψk,l,m,t+∆t − ψk,l,m,t

∆t
=1
{
k + 1 + τ̃t < 0

}
ψk+1,l,m−1,txm−1,t

+ 1
{
k − 1 + τ̃t > 0

}
ψk−1,l,m−1,txm−1,t

+ 1
{
l + 1 + τ̃t < 0

}
ψk,l+1,m+1,tx−m−1,t

+ 1
{
l − 1 + τ̃t > 0

}
ψk,l−1,m+1,tx−m−1,t

− ψk,l,m,t(xm,t + x−m,t + δ) +
o(∆t)

∆t

µFF
m,t+∆t − µFF

m,t

∆t
=µFF

m−1,txm−1,t + µFF
m+1,tx−m−1,t

− µFF
m,t(xm,t + x−m,t + δ) +

o(∆t)

∆t
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Calibration

Assume world economy is on a BGP in 2010s

Parameter Value Description Source

ρ 1% Rate of time preference Acemoglu et al. (2016)
β 1/0.35 R&D cost curvature Akcigit and Ates (2023)

γ 0.01 Climate damage elasticity
Dietz and Venmans (2019);
Nordhaus and Moffat (2017)

ζ 0.00048× 1.1 TCRE
Dietz and Venmans (2019);
Matthews et al. (2009)

ε 0.5
Initial pulse-adjustment time- Dietz and Venmans (2019);
scale of the climate system Ricke and Caldeira (2014)

Table: Externally calibrated parameters
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Calibration

Initial conditions:
▶ Initial share of clean and dirty firms

▶ Emissions since 1850 to compute initial (2019) temperature

▶ Initial gap distribution

▶ Define leaders as firm with highest absolute value of mT (as defined
in empirical section)

▶ Classify sectors as clean or dirty based on leader
▶ Laggard is second firm in terms of mT

▶ Fill in Ψm=0,t=0 using BGP effective gap distribution

Internal calibration procedure similar to Akcigit and Ates (2023):
▶ For given {λ, δ, α, κ}, find BGP effective gap size distribution

▶ Compute model moments

▶ Minimize difference with data moments
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Calibration

Parameter Value Description

λ 1.0656 Innovation step size
δ 0.0374 Diffusion arrival rate
α 44.4299 R&D scaling parameter
κ 68.5578 Emission scaling parameter

Table: Internally calibrated parameters

Moment Model Data Source

Average markup (2015) 1.2953 1.29 D́ıez et al. (2021)
Profit share (2018) 19% 19% Eggertsson et al. (2021)
Productivity growth (avg. 2011-2019) 1.0738% 1.0738% OECD
Emissions (2019, in GtCO2) 37.0826 37.0826 Friedlingstein et al. (2022)

Table: Model fit
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