Do asset purchase programs shape industry dynamics? Evidence from the ECB's SMP on plant entries and exits

Manfred Antoni¹, Michael Koetter^{2 3 4}, Steffen Müller^{2 3}, Talina Sondershaus²

¹IAB Nürnberg (Institute for Employment Research) ²Halle Institute for Economic Research (IWH) ³OvG University Magdeburg ⁴Deutsche Bundesbank

7th ProdTalk, March 2, 2021

Motivation:

- Unconventional monetary policy (UMP) sparks (risky) lending.
- Implications for industry dynamics are unclear.

Research question: Do asset purchase programs (APPs) change exit and entry rates of German plants and therefore hamper factor reallocation?

Analyses:

- Micro analysis on plant level.
- Aggregate analysis of entry and exit dynamics at the region or sector levels.

- Plants tied to UMP banks are 20% less likely to exit.
- Industry dynamics are thawrted entry and exit rates are suppressed.

Motivation:

- Unconventional monetary policy (UMP) sparks (risky) lending.
- Implications for industry dynamics are unclear.

Research question: Do asset purchase programs (APPs) change exit and entry rates of German plants and therefore hamper factor reallocation?

Analyses:

- Micro analysis on plant level.
- Aggregate analysis of entry and exit dynamics at the region or sector levels.

- Plants tied to UMP banks are 20% less likely to exit.
- Industry dynamics are thawrted entry and exit rates are suppressed.

Motivation:

- Unconventional monetary policy (UMP) sparks (risky) lending.
- Implications for industry dynamics are unclear.

Research question: Do asset purchase programs (APPs) change exit and entry rates of German plants and therefore hamper factor reallocation?

Analyses:

- Micro analysis on plant level.
- Aggregate analysis of entry and exit dynamics at the region or sector levels.

- Plants tied to UMP banks are 20% less likely to exit.
- Industry dynamics are thawrted entry and exit rates are suppressed.

Motivation:

- Unconventional monetary policy (UMP) sparks (risky) lending.
- Implications for industry dynamics are unclear.

Research question: Do asset purchase programs (APPs) change exit and entry rates of German plants and therefore hamper factor reallocation?

Analyses:

- Micro analysis on plant level.
- Aggregate analysis of entry and exit dynamics at the region or sector levels.

- Plants tied to UMP banks are 20% less likely to exit.
- Industry dynamics are thawrted entry and exit rates are suppressed.

Industry dynamics and UMP has not been researched yet.

Schumpeterian destruction and market exits

Caballero and Hammour (1994, 1996); Osotimehin and Pappadá (2017).

Entry dynamics have been researched - exits rarely so

Cetorelli and Strahan (2006); Kerr and Nada (2009, 2010); Bertrand et al. (2007).

Lending to unproductive units

Acharya et al. (2019); Jiménez at al. (2014); Caballero et al. (2008).

The SMP lowered government bond yields, caused increases in credit supply and stimulated the macroeconomy.

Eser and Schwaab (2016); Koetter (2020) and Gibson et al. (2016).

Our contribution:

First granular paper that provides evidence on the impact of UMP on industry dynamics.

Does APP mute factor reallocation mechanism?

Industry dynamics and UMP has not been researched yet.

Schumpeterian destruction and market exits

Caballero and Hammour (1994, 1996); Osotimehin and Pappadá (2017).

Entry dynamics have been researched - exits rarely so

Cetorelli and Strahan (2006); Kerr and Nada (2009, 2010); Bertrand et al. (2007).

Lending to unproductive units

Acharya et al. (2019); Jiménez at al. (2014); Caballero et al. (2008).

The SMP lowered government bond yields, caused increases in credit supply and stimulated the macroeconomy.

Eser and Schwaab (2016); Koetter (2020) and Gibson et al. (2016).

Our contribution:

First granular paper that provides evidence on the impact of UMP on industry dynamics.

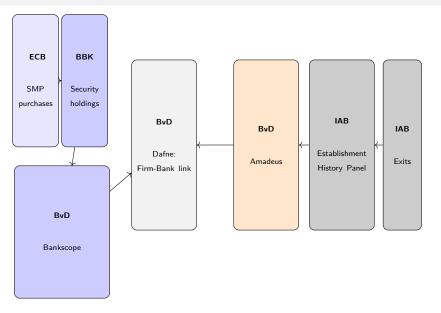
Does APP mute factor reallocation mechanism?

The first sovereign bond purchase program of the ECB provides a good testing ground.

The securities market program (SMP)

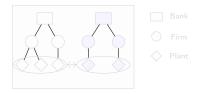
- May 10, 2010 until Sept 6, 2012, volume of 218 billion Euro.
- ECB purchased sovereign debt from Italy, Portugal, Ireland, Spain, Greece.
- Good testing ground: regime shift, response to crisis in Southern European countries, primary aim to lower government bond yields (sterilization) (as in Koetter (2020)).
- Banks holding SMP eligible assets ("treated banks") could benefit by selling (liquid reserves), or holding (evaluation effect).

Hypothesis: Probability of default decreases for plants linked to a treated bank.

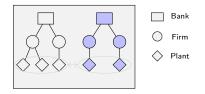

The first sovereign bond purchase program of the ECB provides a good testing ground.

The securities market program (SMP)

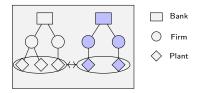
- May 10, 2010 until Sept 6, 2012, volume of 218 billion Euro.
- ECB purchased sovereign debt from Italy, Portugal, Ireland, Spain, Greece.
- Good testing ground: regime shift, response to crisis in Southern European countries, primary aim to lower government bond yields (sterilization) (as in Koetter (2020)).
- Banks holding SMP eligible assets ("treated banks") could benefit by selling (liquid reserves), or holding (evaluation effect).


Hypothesis: Probability of default decreases for plants linked to a treated bank.

We merge bank, firm and plant level data. • Summary statistics


In the micro-level analysis, we compare treated and non-treated plants.

- Regional banks, single bank relationship, small and median plants.
- Fixed effects control for industry and regional demand shocks.
- We distinguish between weak and strong banks, as well as productive and unproductive plants.
- 202,386 plant-year observations, 31,877 plants, 2007-2013.
- Treated banks in blue, non-treated in white:


In the micro-level analysis, we compare treated and non-treated plants.

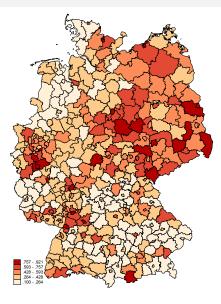
- Regional banks, single bank relationship, small and median plants.
- Fixed effects control for industry and regional demand shocks.
- We distinguish between weak and strong banks, as well as productive and unproductive plants.
- 202,386 plant-year observations, 31,877 plants, 2007-2013.
- Treated banks in blue, non-treated in white:

In the micro-level analysis, we compare treated and non-treated plants.

- Regional banks, single bank relationship, small and median plants.
- Fixed effects control for industry and regional demand shocks.
- We distinguish between weak and strong banks, as well as productive and unproductive plants.
- 202,386 plant-year observations, 31,877 plants, 2007-2013.
- Treated banks in blue, non-treated in white:

What is the effect of the SMP on the probability of default of plants?

 $\textit{Exit}_{it} = \alpha_i + \alpha_{rt} + \alpha_{kt} + \gamma \textit{SMP}_i \times \textit{Post}_t + \delta_x \textit{X}_{it-1} + \epsilon_{it}.$


- We use a linear probability model.
- Dependent: *Exit_{it}* equals 1 if plant *i* exits in year *t*.
- Treatment: *SMP*_i equals 1 if bank held SMP assets in all three years.
- Time dimension: Post equals 0 in 2007–2009, equals 1 in 2010-2013.
- Plant fixed effects, Region x Time fixed effects, Industry x Time fixed effects.
- Lag of bank and firm level controls X_{it-1}.

For an affected plant, the probability of market exit is more than 20% lower compared to non-affected plants.

	I	П	Ш	IV	V
Post*SMP	-0.003*	-0.004**	-0.005**	-0.005**	-0.005**
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Firm age	Yes	Yes	Yes	Yes	Yes
Bank controls	-	Yes	Yes	Yes	Yes
Plant FE	Yes	Yes	Yes	Yes	Yes
Time FE	Yes	Yes	-	-	-
Region-Time FE	-	-	Yes	-	Yes
Sector-Time FE	-	-	-	Yes	Yes
Ν	202,386	202,386	202,386	202,386	202,386
R2	0.248	0.248	0.250	0.251	0.253
Mean Exit	0.023	0.023	0.023	0.023	0.023
SD Exit	0.150	0.150	0.150	0.150	0.150

Weak banks and low productive firms drive lower exit rates

There is large variance across German regions in terms of share of treated plants.

- We aggregate > 10 million plant-year observations on the region or sector level to obtain aggregate entry and exit dynamics.
- There are 402 German regions and 66 sectors.
- We calculate the share of treated plants on region or sector level.
- Research question: How does the share of treated plants in regions or sectors shape entry and exit dynamics?

What is the SMP effect on aggregate exit and entry dynamics?

 $Y_{rt} = \alpha_r + \alpha_t + \gamma SMPshare_r \times Post_t + \epsilon_{rt}.$

- Dependent: Y_{rt} entry or exit rate of region or sector r in year t.
- Treatment: *SMPshare*_r share of treated plants per region or sector.
- Region or sector fixed effects, Time fixed effects.
- Time dimension: Post equals 0 2007-2009, equals 1 2010-2013.

Entry and exit rates are lower in more affected regions and sectors.

Entry rate in region with average SMPshare is reduced by around 6% compared to region with low SMPshare.

	Reg Entry	gion Exit		Sector Entry Exit		
	I	II	III	IV		
Post*SMPshare	-0.007***	-0.004***	-0.023	-0.027**		
	(0.001)	(0.001)	(0.022)	(0.012)		
Time FE	Yes	Yes	Yes	Yes		
Region FE	Yes	Yes	-	-		
Sector FE	-	-	Yes	Yes		
N	2,814	2,814	462	462		
R2	0.782	0.746	0.782	0.880		
Mean dependent	0.050	0.055	0.055	0.055		
SD dependent	0.010	0.009	0.030	0.028		
Mean SMPshare	0.418	0.418	0.476	0.476		
SD SMPshare	0.188	0.188	0.106	0.106		

Low productive regions drive lower entry and exit rates. Sectors with large plants drive lower exit rates.

Further tests confirm our results.

- No results in placebo estimations. Placebo estimations
- Weakest 30% of banks and from the 15th until the 60th pecentile of firms are affected. Weak bank indicator
- Aggregate results results stay robust when we exclude financial centers.
 Excluding financial centers
- T-tests confirm parallel trend assumption. T-tests
- Leads and lags estimations confirm parallel trend assumption.

Thank you!