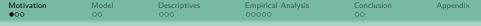
| Motivation<br>000 | Model<br>00 | Descriptives<br>000 | Empirical Analysis | Conclusion<br>00 | Appendix |
|-------------------|-------------|---------------------|--------------------|------------------|----------|
|                   |             |                     |                    |                  |          |

### Robots, Firms, and Workforce Composition in Germany

Liuchun Deng Steffen Müller (YNC & IWH)


Verena Plümpe

(IWH)

Jens Stegmaier (IAB)

(IWH)

ProdTalk, CompNet May 10, 2022



## What is particularly interesting about robots today?

1 In contrast to previous technological revolutions

- · adoption of robots takes place much faster and
- involves all industrial sectors
- In contrast to other high-tech machines
  - robots are much more flexible and versatile
  - they can work autonomously, and
  - they can replace human labor to a much larger extent
- 8 Recent trends:
  - robotic innovations ↑
  - robot prices ↓
  - robot demand worldwide  $\uparrow$
  - automation incentives due to COVID-19  $\uparrow$

| Motivation | Model | Descriptives | Empirical Analysis | Conclusion | Appendix |
|------------|-------|--------------|--------------------|------------|----------|
| 000        | 00    | 000          | 00000              | 00         |          |
|            |       |              |                    |            |          |

## How does robotization affect employment?

- Economic theory: robots can be substitutes or complements to human labour (Acemoglu and Restrepo, 2018)
- Evidence based on the industry-level IFR robot data is mixed (Graetz and Michaels, 2018; Acemoglu and Restrepo, 2019; Dauth, et al., 2021). It cannot fully account for displacement and reallocation effects within industries
- Some recent work based on firm- or plant-level data shows positive employment effects for robot adopters (Bonfiglioli, et al., 2021; Acemoglu, et al., 2020; Koch, et al., 2021; Dixon, et al., 2020)

| Motivation<br>00● | Model<br>00 | Descriptives<br>000 | Empirical Analysis | Conclusion<br>00 | Appendix |
|-------------------|-------------|---------------------|--------------------|------------------|----------|
| Researc           | h contrib   | oution              |                    |                  |          |

- First micro-level evidence from **Germany** the most robot-intensive economy in Europe (IFR Report 2020)
- We link plant-level data with a **direct measure of robot use** to worker level data from social security records and task data
- We are first in analyzing **workforce composition effects** of robot adoption with respect to occupation and **age**
- Policy relevance:
  - $\rightarrow$  socio-economic challenges for workers replaced by robots
  - $\rightarrow$  human capital investment and occupational choice for young generations

| Motivation<br>000 | Model<br>●O | Descriptives<br>000 | Empirical Analysis<br>00000 | Conclusion<br>00 | Appendix |
|-------------------|-------------|---------------------|-----------------------------|------------------|----------|
|                   |             |                     |                             |                  |          |

## A task-based model of robot adoption

- Task-based partial equilibrium model of robot adoption with heterogeneous labor Model Setup
- Key features:
  - task content of jobs varies across occupations (robots replace routine manual tasks) Illustration
  - 2 within a given occupation, adaptation to robots varies across ages (vintage of human capital and experience) (Illustration)

Table: % of routine manual tasks across occupations BBB

| simple manual | qual manual | tech/engin | manager | service |
|---------------|-------------|------------|---------|---------|
| 49.04         | 40.49       | 22.64      | 17.34   | 40.90   |

Notes: BIBB/BAuA data 2012. Manufacturing sample.

| Motivation<br>000 | Model<br>⊙● | Descriptives<br>000 | Empirical Analysis | Conclusion<br>00 | Appendix |
|-------------------|-------------|---------------------|--------------------|------------------|----------|
| Model i           | mplicatic   | ons                 |                    |                  |          |

- Robot adoption has ambiguous effects on total employment (replacement effect vs productivity and reinstatement effect)
- **2** Robot adoption increases worker flows (hirings ↑, separations ↑)
- **3** Robot adoption changes the workforce composition:
  - Less replaceable occupations (technical, managerial) see relative increase in employment.
  - Effects on age profile vary with occupation (initial task specialization vs new task adaptation).

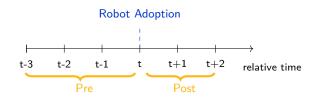
| Motivation<br>000 | Model<br>00 | Descriptives<br>●00 | Empirical Analysis | Conclusion<br>00 | Appendix |
|-------------------|-------------|---------------------|--------------------|------------------|----------|
| Data              |             |                     |                    |                  |          |

### **1** IAB Establishment Panel Survey 2019

A section dedicated to adoption and use of robots

A robot is an automatically controlled, programmable machine with multiple axes or directions of motion that performs certain tasks wholly or partially without human intervention.

Key survey question: How many robots were used in each of the last 5 years (2014–2018)?


Robot adoption is identified as the first time a plant installed robots



| Motivation | Model | Descriptives | Empirical Analysis | Conclusion | Appendix |
|------------|-------|--------------|--------------------|------------|----------|
| 000        | 00    | 000          | 00000              | 00         |          |
| Data       |       |              |                    |            |          |

### **1** IAB Establishment Panel Survey 2019

We randomize non-robot adopters (plants that never used robots) into 4 groups and assign each to one of the four adopter groups. We then define relative time for all plants w.r.t. the (artificial) adoption event. Classification of plants



2 Plant-level employment from Establishment History Panel (BHP)

3 Task information from BIBB/BAuA Employment Survey 2012

May 10, 2022

| Motivation<br>000 | Model<br>00 | Descriptives<br>000 | Empirical Analysis<br>00000 | Conclusion<br>00 | Appendix |
|-------------------|-------------|---------------------|-----------------------------|------------------|----------|
|                   |             |                     |                             |                  |          |

## Employment, hiring, and separation

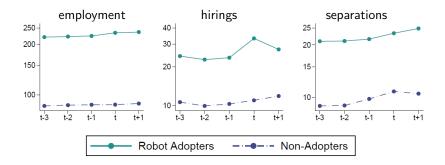



Figure: Employment, hiring and separation at plant level

| Motivatio<br>000 | n |   | Mode<br>00 | al | Dese<br>000 | criptives | Empirical Ar<br>•0000 | nalysis | Conclusi<br>00 | on | Appendix |
|------------------|---|---|------------|----|-------------|-----------|-----------------------|---------|----------------|----|----------|
| _                |   | _ |            |    |             |           | <br>                  |         |                |    |          |

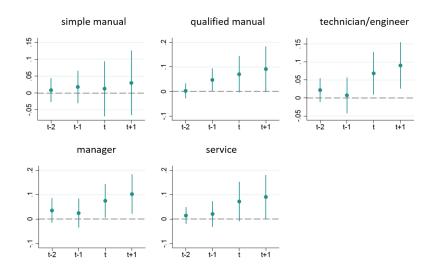
Event study: baseline specification

$$Y_{it} = \alpha_i + \sum_{t=-3}^{t=1} \beta_t T_t + \sum_{t=-3}^{t=1} \gamma_t \operatorname{Robot}_i T_t + \epsilon_{it}, \quad (1)$$

where

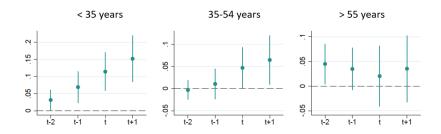
- *Y<sub>it</sub>* is plant *i*'s outcome variable in relative time *t* to the event of robot adoption.
- $\alpha_i$  is plant-level fixed effect.
- *T<sub>t</sub>* is relative time dummy.
- *Robot<sub>i</sub>* is the time-invariant treatment dummy for robot adoption.
- *ϵ<sub>i</sub>* is an idiosyncratic error term.

| Motivation | Model | Descriptives | Empirical Analysis | Conclusion | Appendix |
|------------|-------|--------------|--------------------|------------|----------|
| 000        | 00    | 000          | 0000               | 00         |          |


#### Employment and Worker Flows (event study results)

|                              | Employment | Hirings    | Separations |
|------------------------------|------------|------------|-------------|
|                              | b/se       | b/se       | b/se        |
| t-2                          | 0.0044     | -0.0822*** | 0.0305      |
|                              | (0.0036)   | (0.0188)   | (0.0186)    |
| t-1                          | 0.0076     | -0.0517*** | 0.0543***   |
|                              | (0.0048)   | (0.0196)   | (0.0188)    |
| t                            | 0.0102     | -0.0174    | 0.0908***   |
|                              | (0.0063)   | (0.0201)   | (0.0193)    |
| t+1                          | -0.0019    | -0.0393*   | 0.1186***   |
|                              | (0.0091)   | (0.0213)   | (0.0200)    |
| $1.D_robot_adoption \#t-2$   | 0.0107     | 0.0615     | 0.0019      |
|                              | (0.0102)   | (0.0715)   | (0.0621)    |
| $1.D_{robot_adoption \#t-1}$ | 0.0219     | 0.1018     | 0.0589      |
|                              | (0.0152)   | (0.0763)   | (0.0610)    |
| $1.D_robot_adoption#t$       | 0.0527**   | 0.2741***  | 0.0533      |
|                              | (0.0232)   | (0.0756)   | (0.0671)    |
| $1.D_robot_adoption#t+1$     | 0.0671**   | 0.2126***  | 0.1194*     |
|                              | (0.0282)   | (0.0796)   | (0.0703)    |
| Constant                     | yes        | yes        | yes         |
| N                            | 2096       | 2096       | 2096        |

Notes: Dependent variable is number of workers transformed using inverse hyperbolic sine. Standard errors clustered at plant level. \*\*\* p < 0.01, \*\* p < 0.05, \* p < 0.1.




## Workforce composition by occupation (event study results)





Workforce composition by age (event study results)





Unconditional Figures

| Motivation<br>000 | Model<br>00 | Descriptives<br>000 | Empirical Analysis | Conclusion<br>00 | Appendix |
|-------------------|-------------|---------------------|--------------------|------------------|----------|
|                   |             |                     |                    |                  |          |

## Occupation-Age Workforce Composition (event study)

|             | simple             | qualified  | technician         | manager            | service       | total              |
|-------------|--------------------|------------|--------------------|--------------------|---------------|--------------------|
|             | manual             | manual     | engineer           |                    |               |                    |
| 18–35 years | $\uparrow\uparrow$ | $\uparrow$ | $\uparrow$         | $\downarrow$       | $\uparrow$    | $\uparrow\uparrow$ |
| 35–54 years | $\rightarrow$      | $\uparrow$ | $\uparrow\uparrow$ | $\rightarrow$      | $\rightarrow$ | $\uparrow$         |
| 55–65 years | $\uparrow$         | $\uparrow$ | $\rightarrow$      | $\uparrow\uparrow$ | $\uparrow$    | $\rightarrow$      |
| Total       | $\rightarrow$      | $\uparrow$ | $\uparrow\uparrow$ | $\uparrow\uparrow$ | $\uparrow$    | $\uparrow\uparrow$ |

Notes:  $\uparrow \uparrow =$  significant increase.  $\rightarrow =$  no change.  $\downarrow =$  insignificant drop.

| Motivation<br>000 | Model<br>00 | Descriptives<br>000 | Empirical Analysis | Conclusion<br>• O | Appendix |
|-------------------|-------------|---------------------|--------------------|-------------------|----------|
| Conclus           | ion         |                     |                    |                   |          |

- Employment gains are concentrated among younger workers and technicians/engineers and managers.
- Young workers in low/middle skilled occupations are complements to robots.

 $\Rightarrow$  Could be related to high-quality dual apprentice ship training in German labor market.

- $\Rightarrow$  Shortage of them could hinder the large-scale adoption of robots.
- $\Rightarrow$  Demand for low/middle skilled older workers will decline.
- **3** Results suggest reallocation effects favoring robot adopters.
- ④ Future research: Complementarity between youth and robotics also in countries with other educational systems?

| Motivation<br>000 | Model<br>00 | Descriptives<br>000 | Empirical Analysis | Conclusion<br>○● | Appendix |
|-------------------|-------------|---------------------|--------------------|------------------|----------|
|                   |             |                     |                    |                  |          |

# Thank you!

| Motivation | Model | Descriptives | Empirical Analysis | Conclusion | Appendix |
|------------|-------|--------------|--------------------|------------|----------|
| 000        | 00    | 000          | 00000              | 00         |          |
| <b>D</b>   |       |              |                    |            |          |

### Descriptive statistics

|                     |                     | Robot Adopter (N=116) |        | Non User | (N=1951) |
|---------------------|---------------------|-----------------------|--------|----------|----------|
|                     |                     | Mean                  | SD     | Mean     | SD       |
| Number of employees |                     | 222.67                | 251.01 | 102.64   | 193.49   |
| Hirings             |                     | 24.22                 | 34.50  | 10.62    | 22.41    |
| Separations         |                     | 21.01                 | 23.34  | 8.95     | 16.14    |
| Occupational shares | simple manual       | 0.34                  | 0.23   | 0.28     | 0.50     |
|                     | qualified manual    | 0.29                  | 0.22   | 0.33     | 0.71     |
|                     | technician/engineer | 0.12                  | 0.09   | 0.14     | 0.55     |
|                     | manager             | 0.03                  | 0.03   | 0.03     | 0.05     |
|                     | service             | 0.09                  | 0.09   | 0.12     | 0.80     |
| Age shares          | younger (<35)       | 0.29                  | 0.13   | 0.28     | 0.21     |
|                     | midage (35-54)      | 0.50                  | 0.11   | 0.51     | 0.34     |
|                     | older ( $\geq$ 55)  | 0.20                  | 0.08   | 0.20     | 0.12     |

Notes: Data from administrative social security data for plants identified as robot adopters or non users in the IAB establishment panel 2019 as described in the text. Manufacturing sample. Plant-level averages in t-3.

| Motivation | Model | Descriptives | Empirical Analysis | Conclusion | Appendix |
|------------|-------|--------------|--------------------|------------|----------|
| 000        | 00    | 000          | 00000              | 00         |          |

## Replaceability of tasks by occupation and age

|              |                 | OCCUPATION    |             |            |          |         |       |  |
|--------------|-----------------|---------------|-------------|------------|----------|---------|-------|--|
|              |                 | simple manual | qual manual | tech/engin | managers | occ svc | total |  |
| Α            | Younger (18-35) | 48.76         | 41.71       | 22.84      | 17.97    | 36.00   | 34.25 |  |
| $\mathbf{G}$ | Midage (35–54)  | 48.32         | 39.78       | 23.06      | 17.19    | 43.85   | 32.87 |  |
| $\mathbf{E}$ | Older (55-65)   | 52.72         | 41.14       | 21.23      | 18.26    | 37.91   | 31.86 |  |
|              | Total           | 49.04         | 40.49       | 22.64      | 17.34    | 40.90   |       |  |

Notes: BIBB/BAuA data 2012. Tasks potentially replaceable by robots (F303, F304, F305, F308, F320) as share of total tasks performed. Average on employee level in manufacturing sector. All tasks weighted with frequency of task performance (1 "often", .5 "sometimes", 0 "rarely"). Sampling weights used (Gew2012\_hr).

| Motivation | Model     | Descriptives | Empirical Analysis | Conclusion | Appendix |
|------------|-----------|--------------|--------------------|------------|----------|
| 000        | 00        | 000          | 00000              | 00         |          |
| Baseline   | e model s | setting      |                    |            |          |

- A partial equilibrium setting for a given industry
- Each firm is faced with the same iso-elastic demand with price elasticity  $\eta>1$
- Firm *i* combines a continuum of tasks to produce

$$y_i = A_i \left( \int_0^1 s_i(j)^{\frac{\sigma-1}{\sigma}} dj 
ight)^{\frac{\sigma}{\sigma-1}},$$

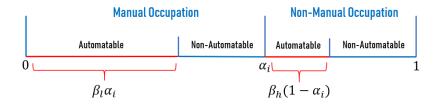
where  $A_i$  is firm-specific productivity,  $s_i(j)$  is supply of task j

• Fixed cost of robot adoption: F

| Motivation | Model   | Descriptives | Empirical Analysis | Conclusion | Appendix |
|------------|---------|--------------|--------------------|------------|----------|
| 000        | 00      | 000          | 00000              | 00         |          |
| Baseline   | model s | setting, con | t'd                |            |          |

- Two occupations: h and  $\ell$
- Firm *i*'s share of tasks performed by  $\ell$ :  $\alpha_i$
- Occupation o's share of automatable tasks:  $\beta_o$  ( $o = \ell, h$ )
- Supply of each task *j* is specified as

$$s_i(j) = \begin{cases} \ell_i(j) + \lambda k_i(j) & 0 \le j \le \beta_\ell \alpha_i \\ \ell_i(j) & \beta_\ell \alpha_i < j \le \alpha_i \\ h_i(j) + \lambda k_i(j) & \alpha_i < j \le \alpha_i + \beta_h(1 - \alpha_i) \\ h_i(j) & \alpha_i + \beta_h(1 - \alpha_i) < j \le 1 \end{cases},$$


where  $\ell_i(j)$  and  $h_i(j)$  are labor input and  $k_i(j)$  is robot input

| Motivation | Model | Descriptives | Empirical Analysis | Conclusion | Appendix |
|------------|-------|--------------|--------------------|------------|----------|
| 000        | 00    | 000          | 00000              | 00         |          |
|            |       |              |                    |            |          |

## Extended model setting with age dimension

- Workers partitioned into G different age groups:  $\{1, 2, ..., G\}$
- For any task i by occupation o (o = l, h), there exists an ideal age group g<sub>o</sub>(i) to perform that task
- Share of tasks automatable for age g and occupation o:  $\beta_o(g)$
- How  $\beta_o(g)$  changes with g varies with o
  - initial task specialization and new task adaptation
- Employment effects more positive (or less negative) for smaller β<sub>o</sub>(g)





| Motivation<br>000 | Model<br>00 | Descriptives<br>000 | Empirical Analysis | Conclusion<br>00 | Appendix |
|-------------------|-------------|---------------------|--------------------|------------------|----------|
|                   | 1.11.       |                     |                    |                  |          |

### Replaceability across ages: illustration

#### **Manual Occupation**



| Motivation | Model | Descriptives | Empirical Analysis | Conclusion | Appendix |
|------------|-------|--------------|--------------------|------------|----------|
| 000        | 00    | 000          | 00000              | 00         |          |
| Data       |       |              |                    |            |          |

### **1** IAB Establishment Panel Survey 2019

| 2014 | 2015 | 2016 | 2017 | 2018 |
|------|------|------|------|------|
|      |      |      |      |      |

### Examples:

| 0 | 0 | 0  | 0  | 0 | ightarrow non-user           |
|---|---|----|----|---|------------------------------|
| 0 | 1 | 3  | 5  | 5 | ightarrow robot adopter      |
| 2 | 2 | 10 | 10 | 8 | $\rightarrow$ incumbent user |

| Motivation | Model | Descriptives | Empirical Analysis | Conclusion | Appendix |
|------------|-------|--------------|--------------------|------------|----------|
| 000        | 00    | 000          | 00000              | 00         |          |
|            |       |              |                    |            |          |

## Workforce composition by occupation (event study results)

|                                       | Occupation     |              |                |                |               |
|---------------------------------------|----------------|--------------|----------------|----------------|---------------|
|                                       | (1)            | (2)          | (3)            | (4)            | (5)           |
|                                       | simple manual  | qual manual  | techn/engin    | manager        | svc occ       |
|                                       | b/se           | b/se         | b/se           | b/se           | b/se          |
| 2.rel_time                            | $0.0152^{**}$  | 0.0017       | $0.0156^{***}$ | 0.0053         | 0.0029        |
|                                       | (0.0069)       | (0.0060)     | (0.0060)       | (0.0055)       | (0.0065)      |
| 3.rel_time                            | $0.0187^{**}$  | 0.0049       | 0.0290***      | $0.0192^{***}$ | 0.0126        |
|                                       | (0.0095)       | (0.0078)     | (0.0077)       | (0.0071)       | (0.0087)      |
| 4.rel_time                            | $0.0315^{***}$ | 0.0051       | $0.0439^{***}$ | 0.0373***      | $0.0247^{**}$ |
|                                       | (0.0117)       | (0.0096)     | (0.0094)       | (0.0088)       | (0.0107)      |
| 5.rel_time                            | 0.0411***      | -0.0130      | $0.0458^{***}$ | $0.0426^{***}$ | $0.0219^{*}$  |
|                                       | (0.0142)       | (0.0122)     | (0.0108)       | (0.0105)       | (0.0121)      |
| $1.D\_robot\_adoption#2.rel\_time$    | 0.0068         | 0.0020       | 0.0216         | 0.0353         | 0.0161        |
|                                       | (0.0215)       | (0.0183)     | (0.0197)       | (0.0303)       | (0.0203)      |
| $1.D\_robot\_adoption#3.rel\_time$    | 0.0165         | $0.0461^{*}$ | 0.0066         | 0.0243         | 0.0213        |
|                                       | (0.0290)       | (0.0278)     | (0.0299)       | (0.0359)       | (0.0312)      |
| $1.D\_robot\_adoption#4.rel\_time$    | 0.0097         | 0.0662       | $0.0669^{*}$   | $0.0740^{*}$   | 0.0715        |
|                                       | (0.0491)       | (0.0445)     | (0.0357)       | (0.0412)       | (0.0489)      |
| $1.D\_robot\_adoption \# 5.rel\_time$ | 0.0225         | 0.0841       | 0.0841**       | 0.0990**       | 0.0887        |
| N                                     | 2067           | 2067         | 2067           | 2067           | 2067          |

back

| Motivation | Model | Descriptives | Empirical Analysis | Conclusion | Appendix |
|------------|-------|--------------|--------------------|------------|----------|
| 000        | 00    | 000          | 00000              | 00         |          |
|            |       |              |                    |            |          |

# Workforce composition by age (event study results)

|                               |            | Age          |                          |
|-------------------------------|------------|--------------|--------------------------|
|                               | (6)        | (7)          | (8)                      |
|                               | young      | midage       | older                    |
|                               | b/se       | b/se         | $\mathbf{b}/\mathbf{se}$ |
| 2.rel_time                    | -0.0138*   | -0.0055      | 0.0505***                |
|                               | (0.0080)   | (0.0049)     | (0.0075)                 |
| 3.rel_time                    | -0.0179*   | -0.0149**    | 0.1005***                |
|                               | (0.0106)   | (0.0066)     | (0.0098)                 |
| 4.rel_time                    | -0.0264**  | -0.0275***   | 0.1616***                |
| _                             | (0.0126)   | (0.0081)     | (0.0117)                 |
| 5.rel_time                    | -0.0515*** | -0.0514***   | 0.2014***                |
|                               | (0.0147)   | (0.0107)     | (0.0132)                 |
| 1.D_robot_adoption#2.rel_time | 0.0294     | -0.0037      | $0.0459^{*}$             |
|                               | (0.0181)   | (0.0130)     | (0.0247)                 |
| 1.D_robot_adoption#3.rel_time | 0.0653**   | 0.0110       | 0.0346                   |
|                               | (0.0277)   | (0.0208)     | (0.0259)                 |
| 1.D_robot_adoption#4.rel_time | 0.1098***  | 0.0441       | 0.0196                   |
|                               | (0.0338)   | (0.0282)     | (0.0370)                 |
| 1.D_robot_adoption#5.rel_time | 0.1449***  | $0.0568^{*}$ | 0.0284                   |
|                               | (0.0412)   | (0.0334)     | (0.0408)                 |
| N                             | 2067       | 2067         | 2067                     |

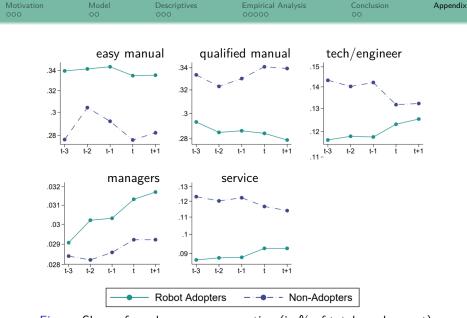



Figure: Share of employees per occupation (in % of total employment)

| Motivation | Model | Descriptives | Empirical Analysis | Conclusion | Appendix |
|------------|-------|--------------|--------------------|------------|----------|
| 000        | 00    | 000          | 00000              | 00         |          |
|            |       |              |                    |            |          |

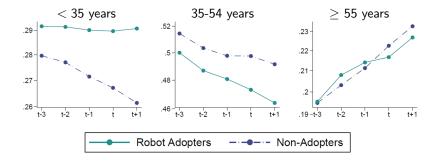



Figure: Share of employees per age group (in % of total employment)

| Motivation | Model    | Descriptives | Empirical Analysis | Conclusion | Appendix |
|------------|----------|--------------|--------------------|------------|----------|
| 000        | 00       | 000          | 00000              | 00         |          |
| TWFF a     | and mult | inle events  |                    |            |          |

The TWFE setting can be decomposed into several simple DiD settings. Goodman-Bacon (2021) shows that an OLS estimation of a TWFE model with several treatment events includes undesirable comparisons.

- But we deviate from the two-way fixed effect model: randomized control group to match exactly the pre and post period of adopter group. We then pool across the treatment to control comparisons in a relative time setting. The staggered diff-in-diff setting is effectively turned into a standard diff-in-diff setting.
- W.r.t. Goodman-Bacon (2021) we exclude two of the simple DiD comparisons: later adopters as control to earlier adopters (wanted), earlier adopters as control to to late adopters (unwanted). But we only lose 4% of observations by not including the wanted comparison above. Thus, we still consider our estimate to be efficient.