The division of unexpected revenue shocks

Paulo Bastos World Bank

Natalia P. Monteiro

U Minho and NIPE

Odd Rune Straume U Minho and NIPE

November 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

- What are the implications of *unexpected* demand shocks for:
 - firm performance (sales, investment, employment)
 - worker compensation (avg. wages, within-firm inequality, components of pay)
- How are these decisions shaped by attributes of top managers?
- Growing interest for empirical evidence on these questions in macro, labor, IO, trade
- Empirical research has faced two important challenges:
 - 1. Quantifying the unexpected component of demand shocks at firm-level
 - 2. Comprehensive analysis of intertwined decisions at the firm-level has great data requirements

This paper

- New methodology for identifying unexpected component of demand shocks at the firm-level, exploiting:
 - 1. Gaps between observed and recently forecasted GDP growth in export markets

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2. Differential initial exposure of exporters to destinations
- Unusually rich collection of panel data on firms and workers for Portugal, 2006-2018
 - 1. Firm census
 - 2. Employer-employee data
 - 3. Export transactions
 - 4. Management survey (subset of firms in 2016)
 - 5. IMF WEO data on actual and forecast growth

Main takeaways

- Unexpected demand shocks impact sales, employment, investment and average wages
- Wage effects occur mainly close to the top of the within-firm wage distribution
- No evidence of adjustments in the skill composition of the workforce
- Unequal average distribution of rents following an unexpected demand shock is mainly driven by:
 - Wage effects in firms managed by high-skilled managers
 - Changes in overtime pay and other pay for high earners in the firm
- Suggests that managerial skill is associated with the adoption of performance-based pay, which would show up in these wage components

Related literature

- Literature on how firm shocks are transmitted to workers (Card et al., 2018; Frías et al., 2018; Kline et al., 2019)
- Literature on role of managers in shaping firm performance and wages (Bertrand and Mullainathan, 2003; Bertrand and Schoar, 2003; Bastos and Monteiro, 2011; Bender et al., 2018)
- Literature on adjustment of components of compensation over the business cycle (Grigsby and Yildirmaz, 2021)

 Literature on internationally active firms in transmission of business cycles (di Giovanni et al., 2018, 2020) Methodology for identifying unexpected demand shocks

Forecast error for a destination-year is defined as:

$$FE_{dt} = G_{dt} - FG_{dt}, \tag{1}$$

- G_{dt} is GDP growth rate of destination d in year t
- FG_{dt} is current-year growth forecast for country d in year t
- Aggregate destination-year forecast errors at the firm-year level:

$$WFE_{it} = \sum_{d=0}^{D} s_{di0} FE_{dt},$$
(2)

 s_{d0} is the share of exports to destination d in total sales of firm i in 2006 (the first year of our data)

Actual and forecast growth in top destinations, 1 to 6

Actual and forecast growth in top destinations, 7 to 12

Empirical model

$$\Delta Y_{ip} = \alpha \Delta WFE_{ip} + \beta \Delta WFG_{ip} + \gamma_{jp} + \tau_{rp} + \epsilon_{ip}, \qquad (3)$$

- WFE_{ip} is weighted forecast error in firm i in period p
- WFG_{ip} is weighted forecast growth in firm i in period p
- ▶ γ_{jp} is industry-period effect and τ_{rp} is a region-period effect
- Take 3-year period averages of the corresponding firm-year variables (Frías et al., 2018)
- Independent variables with 1-year lag relative to the dependent variable
- Standard errors clustered by firm

Actual and forecast growth in firm-level data

Effects on firm performance

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dep. variable:	log sales	log exports	$\log (1 + inv.)$	$\log (1 + inv.$	log	log value	log value	log avg.
			fixed tangible	intangible	employment	added	added per	worker pay
			assets)	assets)			worker	
Weighted forecast error	0.0520^{***}	0.1488^{***}	0.0998*	0.1305^{***}	0.0226^{***}	0.0394^{***}	0.0135	0.0090**
	(0.0107)	(0.0167)	(0.0527)	(0.0493)	(0.0049)	(0.0095)	(0.0084)	(0.0039)
Weighted forecast growth	0.0404***	0.1416^{***}	0.0971***	0.0807***	0.0113^{***}	0.0278***	0.0150***	0.0037*
	(0.0055)	(0.0097)	(0.0292)	(0.0293)	(0.0026)	(0.0049)	(0.0045)	(0.0021)
Period x region FE	Y	Y	Y	Y	Y	Y	Y	Y
Period x industry FE	Y	Y	Υ	Υ	Y	Y	Y	Y
N (obs.)	22199	22199	22199	22199	22199	22199	22199	22199
N (firms)	9306	9306	9306	9306	9306	9306	9306	9306
Adj. R ²	0.0830	0.0320	0.0270	0.0080	0.0460	0.0581	0.0245	0.0250
RSS	3936	41307	202918	377904	2119	5726	4496	885

Notes: In each column, the dependent variable is the change between the average of each 3-year period. Standard errors are clustered at the firmlevel. *10% level of significance, **5% level of significance, ***1% level of significance.

Effects on worker compensation and worker composition

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dep. variable:	log	log hourly	log	$\log (1 +$	$\log (1 +$	log total	share with	person FE
	monthly	wage	monthly	overtime	other pay)	hours	a degree	
	wage		base wage	pay)				
Weighted forecast error	0.0074^{**}	0.0073^{**}	0.0055^{**}	0.0194^{*}	0.0212	0.0263^{***}	0.0001	-0.0212
	(0.0032)	(0.0032)	(0.0027)	(0.0116)	(0.0168)	(0.0061)	(0.0018)	(0.0154)
Weighted forecast growth	0.0028*	0.0029*	0.0009	0.0100	0,0064	0.0113^{***}	-0.0002	-0.0048
	(0.0017)	(0.0017)	(0.0013)	(0.0068)	(0.0092)	(0.0032)	(0.0010)	(0.0073)
Period x region FE	Y	Y	Y	Y	Y	Y	Y	Y
Period x industry FE	Y	Y	Y	Y	Y	Y	Y	Y
N (obs.)	22199	22199	22199	22199	22199	22199	22199	12631
N (firms)	9306	9306	9306	9306	9306	9306	9306	6012
Adj. R ²	0.0120	0.0130	0.0340	0.0200	0.0017	0.0340	0.0070	0.0220
RSS	799	798	444	21879	28275	3625	194	3151

Notes: In each column, the dependent variable is the change between the averages of each 3-year period. Standard errors are clustered at firmlevel. *10% level of significance, **5% level of significance, ***1% level of significance.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Effects on worker compensation: high vs low earners

	(1)	(2)	(3)	(4)	(5)	(6)				
Dep. variable:		log monthly wage								
High vs. low earners Definition	high 5%	low 95%	high 15%	low 85%	high 25%	low 85%				
Weighted forecast error	0.0153***	0.0052**	0.0117**	0.0047*	0.0087**	0.0035				
Weighted forecast growth	0.0063** (0.0029)	-0.0004 (0.0014)	(0.0040) 0.0043^{*} (0.0024)	-0.0002 (0.0014)	0.0030 (0.0022)	-0.0006 (0.0014)				
Period x region FE	Y	Y	Y	Y	Y	Y				
Period x industry FE N (obs.)	Y 20888	Y 20888	Y 20888	Y 20888	Y 20888	Y 20888				
N (firms)	8745	8745	8745	8745	8745	8745				
Adj. R ² RSS	$0.0070 \\ 2476$	$0.0155 \\ 485$	0.0086 1757	$0.0161 \\ 446$	$0.0092 \\ 1451$	0.0172 424				

Notes: In each column, the dependent variable is the change between the averages of each 3-year period. Standard errors are clustered at firm-level. *10% level of significance, **5% level of significance, **1% level of significance.

Effects on worker compensation, high vs low earners, according to managerial skill (defined by occupation)

	(1)	(2)	(3)	(4)	(5)	(6)				
Dep. variable:		log monthly wage								
High vs. low earners	high	low	high	low	high	low				
Definition	5%	95%	15%	85%	25%	75%				
A. Firms with high-skilled manag	ers									
Weighted forecast error	0.0363***	-0.0001	0.0277^{**}	0.0029	0.0177	0.0007				
	(0.0134)	(0.0075)	(0.0112)	(0.0067)	(0.0109)	(0.0069)				
Weighted forecast growth	0.0195***	-0.0001	0.0122**	0.0013	0.0082	0.0003				
	(0.0071)	(0.0033)	(0.0062)	(0.0031)	(0.0058)	(0.0031)				
Period x region FE	Y	Y	Y	Y	Y	Y				
Period x industry FE	Y	Y	Y	Y	Y	Y				
N (obs.)	5027	5027	5027	5027	5027	5027				
N (firms)	1991	1991	1991	1991	1991	1991				
Adj. R ²	0.0009	0.0256	0.0023	0.0318	0.0054	0.0345				
RSS	589.7	110.4	391.8	95.48	322.4	89.88				
B. Firms with low-skilled manage	<i>us</i>									
Weighted forecast error	0.0021	0.0039	-0.0011	0.0018	-0.0034	-0.0005				
	(0.0139)	(0.0068)	(0.0115)	(0.0067)	(0.0111)	(0.0069)				
Weighted forecast growth	0.0033	-0.0031	0.0016	-0.0034	0.0010	-0.0034				
	(0.0073)	(0.0029)	(0.0060)	(0.0029)	(0.0054)	(0.0029)				
Period x region FE	Y	Y	Y	Y	Y	Y				
Period x industry FE	Ŷ	Y	Ŷ	Y	Ŷ	Ŷ				
N (obs.)	5207	5207	5207	5207	5207	5207				
N (firms)	2114	2114	2114	2114	2114	2114				
Adj. R ²	0.0114	0.0210	0.0177	0.0196	0.0176	0.0199				
RSS	623	108	423	98	341	93				

Notes: In each column, the dependent variable is the change between the averages of each 3-year period. Standard errors are clustered at firm-level. *10% level of significance, **5% level of significance, ***1% level of significance.

Effects on worker compensation, high vs low earners, according to managerial skill (defined as top 1% earners)

	(1)	(2)	(3)	(4)	(5)	(6)		
Dep. variable:			log mon	g monthly wage				
High versus low earners	high	low	high	low	high	low		
Definition	5%	95%	15%	85%	25%	85%		
A. Firms with high-skilled n	nanagers							
Weighted forecast error	0.0215^{**}	-0.0033	0.0152^{*}	-0.0031	0.0085	-0.0048		
	(0.0107)	(0.0046)	(0.0092)	(0.0043)	(0.0085)	(0.0042)		
Weighted forecast growth	0.0092*	-0.0028	0.0054	-0.0023	0.0025	-0.0033		
	(0.0054)	(0.0025)	(0.0045)	(0.0024)	(0.0041)	(0.0025)		
Period x region FE	Y	Y	Y	Y	Y	Y		
Period x industry FE	Y	Y	Y	Y	Y	Y		
N (obs.)	7826	7826	7826	7826	7826	7826		
N (firms)	3114	3114	3114	3114	3114	3114		
Adj. R ²	0.0032	0.0192	0.0057	0.0215	0.0079	0.0235		
RSS	931	178	629	161	516	153		
B. Firms with low-skilled m	anagers							
Weighted forecast error	0.0109*	0.0079**	0.0090*	0.0074**	0.0076	0.0065**		
	(0.0062)	(0.0031)	(0.0054)	(0.0031)	(0.0051)	(0.0031)		
Weighted forecast growth	0.0047	0.0005	0.0036	0.0006	0.0030	0.0004		
	(0.0034)	(0.0017)	(0.0030)	(0.0017)	(0.0027)	(0.0017)		
Period x region FE	Y	Y	Υ	Y	Y	Υ		
Period x industry FE	Y	Y	Y	Y	Y	Y		
N (obs.)	13058	13058	13058	13058	13058	13058		
N (firms)	5631	5631	5631	5631	5631	5631		
Adj. R ²	0.0099	0.0191	0.0118	0.0180	0.0130	0.0185		
RSS	1522	301	1111	279	919	267		

Notes: In each column, the dependent variable is the change between the averages of each 3-year period. Standard errors are clustered at firm-level. *10% level of significance, **5% level of significance, ***1% level of significance.

Effects on different wage components, high vs low earners, according to managerial skill (defined by occupation)

	(1)	(2)	(3)	(4)	(5)	(6)		
Dep. variable:	log bas	æ wage	log over	log overtime pay		ier pay		
High versus low earners	high	low	high	low	high	low		
Definition	15%	85%	15%	85%	15%	85%		
A. Firms with high-skilled managers								
Weighted forecast error	0.0115	0.0012	0.0719^{*}	-0.0017	0.1071*	0.0736*		
	(0.0091)	(0.0054)	(0.0433)	(0.0360)	(0.0596)	(0.0421)		
Weighted forecast growth	0.0009	-0.0016	0.0264	-0.0069	0.0420	0.0324*		
	(0.0042)	(0.0024)	(0.0248)	(0.0216)	(0.0318)	(0.0189)		
Pariod r majon FF	v	v	v	v	v	v		
Period x industry FE	v	v	v	v	v	v		
N (obs.)	5027	5027	5027	5027	5027	5027		
N (firms)	1991	1991	1991	1991	1991	1991		
Adi B ²	0.0188	0.0634	0.0401	0.0462	0.0034	0.0062		
BSS	211	53	7889	5799	8118	3797		
B. Firms with low-skilled me	anagers							
Weighted forecast error	0.0022	0.0050	0.0597*	0.0171	0.0179	0.0265		
	(0.0088)	(0.0053)	(0.0359)	(0.0321)	(0.0532)	(0.0417)		
Weighted forecast growth	-0.0001	0.0003	0.0238	0.0070	0.0004	-0.0339*		
	(0.0050)	(0.0023)	(0.0198)	(0.0178)	(0.0299)	(0.0199)		
Pariod r majon FF	v	v	v	v	v	v		
Poriod x industry FF	v	v	v	v	v	v		
N (obr.)	5207	5207	5207	5207	5207	5207		
N (firms)	2114	2114	2114	2114	2114	2114		
Adi D ²	0.0191	0.0544	0.0221	0.0927	0.0122	0.0002		
RSS	305	55	6655	5234	9702	4994		

Notes: In each column, the dependent variable is the change between the averages of each 3-year period. Standard errors are clustered at firm-level. *10% level of significance, **5% level of significance, ***1% level of significance.

Effects on different wage components, high vs low earners, according to managerial skill (defined as top 1% earners)

	(1)	(2)	(3)	(4)	(5)	(6)	
Dep. variable:	log ba	se wage	log overtime pay		log otl	ner pay	
High versus low earners	high	low	high	low	high	low	
Definition	15%	85%	15%	85%	15%	85%	
A. Firms with high-skilled managers							
Weighted forecast error	0.0087	-0.0018	0.0717^{**}	0.0160	0.0703^{*}	0.0269	
	(0.0074)	(0.0036)	(0.0321)	(0.0272)	(0.0412)	(0.0284)	
Weighted forecast growth	0.0012	-0.0029	0.0280	0.0083	-0.0059	-0.0045	
	(0.0033)	(0.0020)	(0.0178)	(0.0151)	(0.0249)	(0.0142)	
Period x region FE	Y	Y	Y	Y	Y	Y	
Period x industry FE	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	
N (obs.)	7826	7826	7826	7826	7826	7826	
N (firms)	3114	3114	3114	3114	3114	3114	
Adi, B ²	0.0137	0.0454	0.0213	0.0298	0.0091	0.0088	
RSS	389	92	12938	9347	14076	6957	
B. Firms with low-skilled m	anagers						
Weighted forecast error	0.0072	0.0069***	0.0181	0.0170	0.0087	0.0231	
0	(0.0046)	(0.0024)	(0.0168)	(0.0163)	(0.0281)	(0.0232)	
Weighted forecast growth	0.0024	0.0010	0.0154	0.0061	0.0091	0.0090	
	(0.0025)	(0.0013)	(0.0100)	(0.0095)	(0.0155)	(0.0120)	
Davia data anti-ar EE	v	v	v	v	v	v	
Period x region FE	I V	I V	I V	I V	I V	I V	
N (-h-)	12059	12059	12059	12059	12059	12059	
N (ODS.)	13038	13038	13038	13038	13038	13038	
N (IIIIIS)	0001	3031	3031	3031	3031	3031	
Adj. R ⁻	0.0211	0.058	0.0174	0.0171	0.0045	0.0018	
RSS	765	156	14868	11253	27679	16695	

Notes: In each column, the dependent variable is the change between the averages of each 3-year period. Standard errors are clustered at firm-level. *10% level of significance, **5% level of significance, ***1% level of significance.

Conclusion

- New methodology for identifying unexpected component of demand shocks at the firm-level, exploiting:
 - 1. Gaps between observed and recently forecasted GDP growth in export markets
 - 2. Differential initial exposure of exporters to destinations
- Unusually rich collection of panel data on firms and workers for Portugal, 2006-2018
- Wage effects of unexpected demand shocks occur mainly close to the top of the within-firm wage distribution
 - Wage effects in firms managed by high-skilled managers
 - Changes in overtime pay and other pay for high earners in the firm
- Suggests that managerial skill is associated with the adoption of performance-based pay, which would show up in these wage components

References I

- Bastos, Paulo and Natalia P. Monteiro, "Managers and Wage Policies," <u>Journal of Economics and Management</u> Strategy, 2011, 20 (4), 957–984.
- Bender, Stefan, Nicholas Bloom, David Card, John Van-Reenen, and Stefanie Wolter, "Management Practices, Workforce Selection, and Productivity," Journal of Labor Economics, 2018, 36 (S1), S372–S409.
- Bertrand, Marianne and Antoinette Schoar, "Managing with Style: The Effect of Managers on Firm Policies," Quarterly Journal of Economics, 2003, 118 (4), 1169–1208.
- ____ and Sendhil Mullainathan, "Enjoying the Quiet Life? Corporate Governance and Managerial Preferences," Journal of Political Economy, 2003, <u>111</u> (5), 1043–1075.
- Card, David, Ana Rute Cardoso, Jorg Heining, and Patrick Kline, "Firms and Labor Market Inequality: Evidence and Some Theory," Journal of Labor Economics, 2018, 36 (S1), S13–S70.
- di Giovanni, Julian, Andrei A. Levchenko, and Isabelle Mejean, "The Micro Origins of International Business Cycle Comovement," American Economic Review, 2018, 108 (1), 82–108.
- ____, ___, and ____, "Foreign Shocks as Granular Fluctuations," NBER Working Paper 28123, 2020.
- Frías, Judith A., David S. Kaplan, Eric Verhoogen, and David Alfaro-Serrano, "Exports and Wage Premia: Evidence from Mexican Employer-Employee Data," CDEP-CGEG Working Paper no. 64, 2018.
- John, Erik Hurst Grigsby and Ahu Yildirmaz, "Aggregate Nominal Wage Adjustments: New Evidence from Administrative Payroll Data," American Economic Review, 2021, 111(2) (2), 428–471.
- Kline, Patrick, Neviana Petkova, Heidi Williams, and Owen Zidar, "Who Profits from Patents? Rent-Sharing at Innovative Firms," Quarterly Journal of Economics, 2019, 134 (3), 1343–1404.