The impact of air pollution on labour productivity in France

Clara Kögel¹

12th CompNet Annual Conference - October 2023

¹OECD Directorate for Science, Technology and Innovation

Note: The views expressed here are those of the authors and cannot be attributed to the OECD or its member countries.

Motivation

Motivation and main contribution

• Motivation

- Increasing evidence on **subtle effects** of air pollution lowering individuals' **cognitive abilities**
- Limited evidence (few studies, specific cases),...
- ...in particular on heterogeneous effect across firms

• Main Contribution

- **Country-wide** applicable estimation method (including both manufacturing and services firms)
- Within a low pollution setting
- Accounts for firm-specific characteristics on large set of firms
- Evidence on the **cognitive channel** using matched employer-employee data

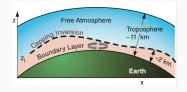
- Significant negative impact of air pollution on productivity
 - 10% increase in PM 2.5 leads to 1.5% decrease in labour productivity
- Driven by service-intensive firms and sectors with high share of skilled workers
 - In line with the expectation: air pollution affects cognitive skills, concentration, headache, and fatigue in non-routine cognitive tasks
- Compared to an estimation of the marginal abatement cost of PM 2.5 (Air Quality Directive 2008/50/EC), gains from labour productivity can largely offset the cost

Narrowly targeted settings, concern of their external validity:

- Worker output (Manufacturing site, China): He et al. (2019)
- N. of garments sewn (Garment factory, India): Adharyu et al. (2019)
- N. of boxes packed (Pear farm, California): Chang et al. (2016)
- Daily harvest (Berry farm, California): Graff Zivin and Neidell (2012)
- Others: Stock market returns (NY): Heyes et al. (2016); Scores in high-school examination (Israel): Ebenstein et al. (2016); Chess tournament (Germany): Künn et al. (2019); Real GDP (EU): Dechezlepretre et al. (2019)
- Exception: Value added per worker (Across manufacturing plants, China) Fu et al. (2021)

Data and Empirical model

Let's consider a basic estimation


i for the establishment, \boldsymbol{s} the sector, l the local labour market, and \boldsymbol{t} the time.

$$LPROD_{i,s,l,t} = \beta_1 P_{l,t} + \gamma_l + \gamma_i + \gamma_{s,t} + \epsilon_{i,s,l,t},$$
(1)

- LPROD_{*i*,*s*,*l*,*t*}: labour productivity (log)
- $P_{l,t}$: air pollution concentration
- γ_I , γ_i , $\gamma_{s,t}$: local labour market, establishment, and sector-time FE
- β_1 : impact on productivity from a one-unit increase in pollution concentration $(1 \ \mu g/m^3)$
- **Simultaneity bias**: The higher the produced output within a region, the higher is the pollution level
 - IV approach (Planetary Boundary Layer Height, Wind Speed)

What is Planetary Boundary Layer Height? (PBLH)

- Distance between surface and inversion
- Area of vertical exchange of heat, water vapor, pollution
- **Inversely related** to air pollution through dispersion

Validity of Instrument - Relevance

- Strong relationship (PBLH air pollution): Arya et al. (1998); Jacobson et al. (2002); Xiang et al. (2019)
- Used by other papers: Broner, Bustos, Carvalho (2012); Schwartz et al. (2017); Zhang, Wu and Liu (2020)

Exogeneity

PBLH varies according to:

- Heating flux between the sun and the earth
- Unpredictable large-scale air movements
- Pressure divergence
- Horizontal movement of cold air under a warmer layer of air
- Aerosols reflecting sunlight **only** at extremely high levels of pollution, \sim 100 times larger than French average (Rémy et al., 2015)

Exclusion restriction

No reason to believe that PBLH matters for well-being of workers

Capacity to carry PM away from a certain location - thus inversely related to pollution

- Wind speed generated by atmospheric pressures, highly variable within short time frames
- Used by numerous papers using wind as predictor for pollution (Herrnstadt and Muehlegger, 2015; Ward, 2015; Bondy et al., 2020)
- Wind speed should only affect productivity through the effect of pollution: since focus on low wind speed should be the case

i for the establishment, \boldsymbol{s} the sector, l the local labour market, and \boldsymbol{t} the time.

$$LPROD_{i,s,l,t} = \beta_1 \widehat{P_{l,t}} + \gamma_l + \gamma_i + \gamma_{s,t} + \epsilon_{i,s,l,t}$$
(2)

- *LPROD_{i,s,t}*: Labour productivity (log)
- $\widehat{P_{l,t}}$: Predicted air pollution (PM 2.5) based on PBLH and wind speed
- γ_I , γ_i , $\gamma_{s,t}$: local labour market, establishment, and sector-time FE

Data

2001 to 2018

- Air pollution
 - Van Donkelaar et al.: Satellite air quality data with surface air monitoring stations
 - Yearly, 0.01 degree resolution grid, PM 2.5
- Establishment-level labour productivity and share of high-skilled workers
 - FARE/ FICUS, One-establishment firms
 - DADS Panel, Occupation codes
- Boundary Layer Height and Wind Speed
 - Weather station data (ERA 5)
 - Daily, 0.25 degree resolution grid
 - Aggregated to yearly measure: Lowest bin of 12 for Wind, lowest percentile for PBLH

Results

Table 1: First stage estimation

	(1)	(2)	
Dependent variable:	$P_{I,t}$	$P_{I,t}$	
$B_{l,t}$	0.043***	0.037***	
	(0.01)	(0.01)	
$W_{l,t}$	0.039***	0.032***	
) ·	(0.01)	(0.01)	
$C_{l,t}$		0.021*	
		(0.00)	
Parameters of the regressions:			
N of observations	2,491,151	2,491,151	
LLM FE	yes	yes	
Sec-Time FE	yes	yes	
Robust SE	yes	yes	
Adjusted R2	0.89	0.91	
F-statistics	71.51	86.43	

Robust standard errors clustered at the zip code-year level and at the establishment in parentheses.

* n < 0.05 ** n < 0.01 *** n < 0.001

Results (ii)

Table 2: The effect of predicted air pollution on labour productivity

Dependent variable:	LPROD _{i,s,l,t}	LPROD _{i,s,l,t}
$\widehat{P_{l,t}}$	-0.021*** (0.03)	-0.014*** (0.01)
C _{I,t}	(0.03)	-0.007*** (0.02)
Parameters of the regressions:		
N of observations	2,491,151	2,491,151
Temperature control	no	yes
LLM FE	yes	yes
Sec-Time FE	yes	yes
Establishment FE	yes	yes
Robust SE	yes	yes
Adjusted R2	0.63	0.72
Weak id. stat.	25.42	26.58
Hansen J stat. p-value	0.51	0.42

Robust standard errors clustered at the zip code-year level and at the establishment in parentheses.

* $\rho < 0.05$, ** $\rho < 0.01$, *** $\rho < 0.001$

PM2.5 penetrates deep into the lungs and brain:

- Inflammatory reactions
- Reduction of the transportation of oxygen to the brain
- Impacting cognitive skills, concentration, headache, fatigue
- \Rightarrow High-skilled workers executing non-routine cognitive tasks
- \Rightarrow Mainly in professional, managerial, technical, and creative occupations

Results - Firm-level heterogeneity (i)

	1rst-stage $(P_{l,t})$	2nd-stage $(LPROD_{i,s,l,t})$
B _{I,t}	0.032*** (0.01)	
W _{I,t}	0.020*** (0.01)	
$HighSkilled_{i,t}$	-0.05 (0.01)	0.433*** (0.10)
$\widehat{P_{I,t}}$		-0.021* (0.01)
$\widehat{P_{I,t}} * HighSkilled_{i,t}$		-0.041** (0.02)
N of observations	2,491,151	2,491,151

Table 3: Firm-level heterogeneity: Share of high skilled workers

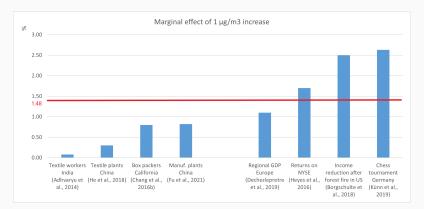
Table 4: Firm-level heterogeneity: Share of services within total production
--

	1rst-stage $(P_{l,t})$	2nd-stage $(LPROD_{i,s,l,t})$
B _{I,t}	0.034*** (0.01)	
$W_{l,t}$	0.021*** (0.01)	
$ServiceIntensity_{i,s,l,t}$	-0.03* (0.02)	0.017** (0.01)
$\widehat{P_{l,t}}$		-0.009 (0.00)
$\widehat{P_{l,t}}$ * ServiceIntensity _{i,s,l,t}		-0.023*** (0.00)
N of observations	2,491,151	2,491,151

Table 5: Heterogeneity in the effect of air pollution on labour productivity:Urban vs. rural

Dependent variable:	First-stage $P_{I,t}$	Second-stage LPROD _{i,s,z,l,t}	Second-stage LPROD _{i,s,z,l,t}
B _{l,t}	0.021*** (0.01)		
$W_{l,t}$	0.017*** (0.01)		
Urban _{z,I,t}	0.332*** (0.01)	0.336** (0.02)	0.559* (0.03)
$ServiceIntensity_{i,s,z,l,t}$	0.02 (0.02)		0.094*** (0.02)
$\widehat{P_{l,t}}$		-0.012* (0.02)	0.014 (0.01)
$\widehat{P_{l,t}} * Urban_{z,l,t}$		-0.021** (0.03)	-0.015** (0.03)

15

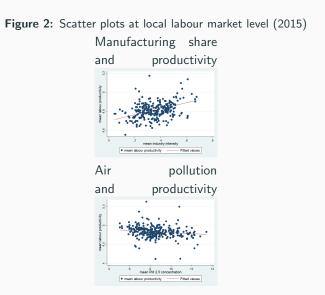

Robustness Checks

- Geographical Sorting
- Confounding factors
- Summer vs. Winter Inversions 🕑
- Different Pollutants D
- Non-linear effect of air pollution on productivity
- Multi-firm plants 💽
- Reduced-form Results
- Placebo test

▶ Back

Conclusion

Figure 1: Effect of increase in PM 2.5 on productivity across existing studies

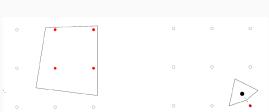

- Significant negative impact of air pollution on productivity
 - 10% increase in PM 2.5 leads to 1.5% decrease in labour productivity
- Driven by service-intensive firms and sectors with high share of skilled workers
- Comparison
 - Compared to an estimation of the marginal abatement cost of PM 2.5 (Air Quality Directive 2008/50/EC), gains from labour productivity can largely offset the cost (roughly 5x costs)

Thank you!

koegel.clara@gmail.com

Appendix

Appendix: Scatterplots Motivation



Appendix: Zip Codes

Figure 3: Zip codes of France

Appendix: Match of the Data

Figure 4: Data match

Source: Dechezlepretre et al., 2018

Note: Gridded data points are given by small circles and zip code boundaries are given by black polygons. In the left panel, several gridded data points overlie the zip code boundary (and are coloured red). The atmospheric conditions in the zip code boundary are taken as the average across all points that overlie the region. On the right, no gridded data points overlie the zip code boundary. In this case, we take observations from the closest gridded data point (shaded red) to the centroid of the polygon (shaded black) as representative of atmospheric conditions in the zip code boundary.

Geographical Sorting (i)

Back

$LPROD_{i,s,l,t}$ Age > 10	LPROD _{i,s,l,t} Age > 7
-0.019*** (0.001)	-0.021*** (0.001)
1,271,255	1,565,171
yes	yes
0.74	0.74
	Age > 10 -0.019*** (0.001) 1,271,255 yes yes yes yes yes yes

Table 6: Robustness - Focus on old firms only

Robust standard errors clustered at the zip code-year level and at the establishment in parentheses.

* $\rho < 0.05$, ** $\rho < 0.01$, *** $\rho < 0.001$

-

Table 7: Robustness - Focus on local labour markets with constant population

	LPROD _{i,s,l,t}
$\widehat{P_{I,t}}$	-0.028** (0.001)
Parameters of the regressions:	
N of observations	1,144,747
LLM FE	yes
Sec-Time FE	yes
Establishment FE	yes
Robust SE	yes
Adjusted R2	0.74

Robust standard errors clustered at the zip code-year level and at the establishment in parentheses.

* $\rho < 0.05$, ** $\rho < 0.01$, *** $\rho < 0.001$

Geographical Sorting (iii)

• Back Test: Firms with perfect information would move if they would expect that air pollution is going to increase in the next years

Table 8: The effect of future air pollution on the probability of firm exit

Dependent variable:	Prob.Exit _{1,2010}	Prob.Exit _{1,2010}		
P _{1,2011-2018}	-0.002	-0.002		
	(0.00)	(0.00)		
$\bar{P}_{I,2011-2018} * HighSkilled_{i,t}$		-0.001		
		(0.00)		
HighSkilled _{i.t}		0.019		
		(0.02)		
N of observations	2,491,151	2,491,151		
s-t FE, robust SE	yes	yes		
Adjusted R2	0.01	0.01		

Confounding factors

▶ Back

Dependent variable:	First-stage $P_{I,t}$	Second-stage $LPROD_{i,s,l,t}$
$B_{I,t}$	0.027** (0.01)	
$W_{l,t}$	0.008** (0.01)	
VA _{I,t}	0.242*** (0.05)	0.164*** (0.32)
$\widehat{P_{l,t}}$		-0.012* (0.18)
N of observations i, s-t, I FE, robust SE Adjusted R2	2,491,151 yes 0.92	2,491,151 yes 0.69

Table 9: Effect of air pollution on productivity controlling for regional VA

▶ Back

Dependent variable:	First-stage $P_{l,t}$	First-stage P _{I,t}	Second-stage LPROD _{i,s,l,t}
B ^{Summer} I,t	0.154*** (0.00)	0.153*** (0.00)	
$B_{I,t}^{Winter}$	0.060* (0.00)	0.065* (0.00)	
$W_{l,t}$		-0.090*** (0.00)	
$\widehat{P_{l,t}}$			-0.010*** (0.00)
N of observations	2,491,151	2,491,151	2,491,151
i, s-t, I FE, robust SE	yes	yes	yes
Adjusted R2	0.88	0.88	0.63

Table 10: The effect of seasonal BLH and wind speed on air pollution

Different Pollutants

▶ Back

Table 11	The	effect of	predicted	air	pollution ((PM	10)	on	labour	productivity
----------	-----	-----------	-----------	-----	-------------	-----	-----	----	--------	--------------

Dependent variable:	First-stage PM10 _{I,t}	Second-stage LPROD _{i,s,l,t}
B _{I,t}	0.003** (0.01)	
W _{I,t}	0.002** (0.01)	
$\widehat{PM10_{l,t}}$		-0.038* (0.51)
N of observations	2,491,151	2,491,151
i, s-t, I FE	yes	yes
Robust SE	yes	yes
Adjusted R2	0.85	0.70
F-statistics	10.28	

Back

Table 12:	The non-linear	effect of	predicted	air	pollution	on	labour	productivity
-----------	----------------	-----------	-----------	-----	-----------	----	--------	--------------

Dependent variable:	First-stage $P_{l,t}$	First-stage $P_{l,t}^2$	Second-stage LPROD _{i,s,l,t}
$B_{l,t}$	0.032** (0.21)	0.014** (0.14)	
$W_{l,t}$	0.021** (0.14)	0.013** (0.11)	
$\widehat{P_{l,t}}$			0.010** (0.11)
$\widehat{P_{l,t}^2}$			-0.008** (0.00)
N of observations i, s-t, I FE Robust SE Adjusted R2	2,491,151 yes yes 0.88	2,491,151 yes yes 0.88	2,491,151 yes yes 0.70

▶ Back

Table 13: The Effect of Predicted Air Pollution on Labour Productivity

	LPROD _{i,s,l,t}
$\widehat{P_{l,t}}$	-0.028***
	(0.0018)
N of observations	5,345,407
i, s-t, I FE	yes
Robust SE	yes
Adjusted R2	0.0036

Robust standard errors clustered at the zip code-year level and at the establishment in parentheses.

* ρ < 0.05, ** ρ < 0.01, *** ρ < 0.001

Reduced form estimation

Back

 Table 14: Reduced-form results: The effect of PBLH and wind speed on labour productivity

Dependent variable:	LPROD _{i,s,l,t}	LPROD _{i,s,l,t}	LPROD _{i,s,l,t}
$B_{l,t}$	-0.003***	-0.003***	-0.003***
	(0.00)	(0.00)	(0.00)
$W_{l,t}$	-0.002***	-0.003*	-0.003*
	(0.00)	(0.00)	(0.00)
$C_{l,t}$			-0.00
· · · · · · · · · · · · · · · · · · ·			(0.00)
N of observations	2,491,151	2,491,151	2,491,151
LLM FE	no	yes	yes
Sec-Time FE	yes	yes	yes
Establishment FE	yes	yes	yes
Robust SE	yes	yes	yes
Adjusted R2	0.70	0.70	0.70

Placebo test

Back

Table 15: The effect of randomised air pollution on labour productivity

Dependent variable:	First-stage $P_{I,t}$	Second-stage $LPROD_{i,s,l,t}$
$B_{l,t}$	0.082 (0.05)	
W _{I,t}	0.0113 (0.07)	
$\widehat{P_{l,t}}$		-0.003 (0.01)
N of observations i, s-t, I FE; robust SE Adjusted R2	2,491,151 yes 0.90	2,491,151 yes 0.73